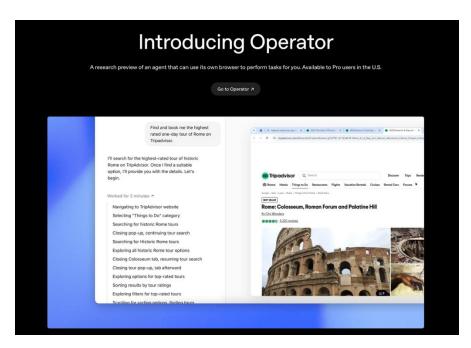

OS-Genesis: Automating GUI Agent Trajectory

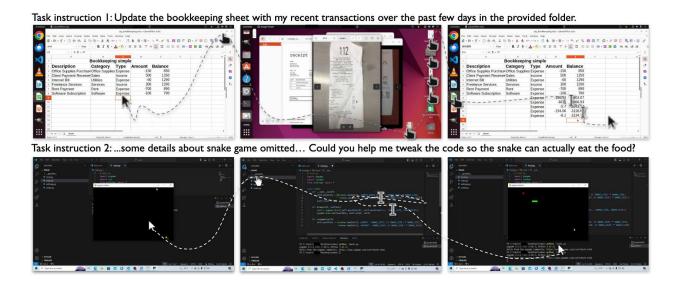
Construction via Reverse Task Synthesis

Qiushi Sun qiushisun.github.io

X @qiushi_sun

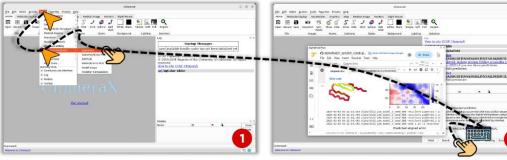

The Feasibility of Jarvis AI from Marvel in Real Life

Both academia and industry are building computer use agents



Claude Computer Use

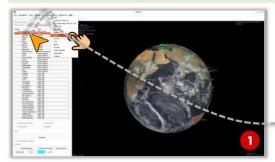
Automating daily computer tasks


OpenAI Operator

Daily Computer Use

Automate scientific workflows

Instruction: Predict the protein structure for the amino acid sequence of 'MGND...' via AlphaFold in ChimeraX.


See Advanced Contract Contract

Step1: Toggle the widget of AlphaFold.

Step2: Input the given sequence and call out AlphaFold for structure prediction.

Step3: Wait until the prediction finished.

Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Select the Sol and click 'Goto' in contect menu.

Step2: Slide the mouse wheel to move the camera away from Sol.

Step3: Click to show orbits of planets.

Some Typical & Recent works

SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents, ACL 2024

OS-ATLAS: A Foundation Action Model for Generalist GUI Agents , ICLR 2025 Spotlight

OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis , ACL 2025

Breaking the Data Barrier -- Building GUI Agents Through Task Generalization

AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant , ACL 2025

ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Some Typical & Recent works

SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents, ACL 2024

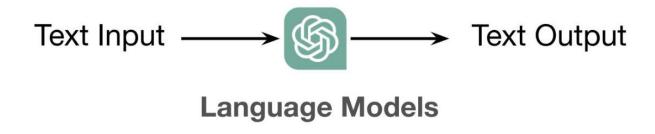
OS-ATLAS: A Foundation Action Model for Generalist GUI Agents, ICLR 2025 Spotlight

OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis, ACL 2025

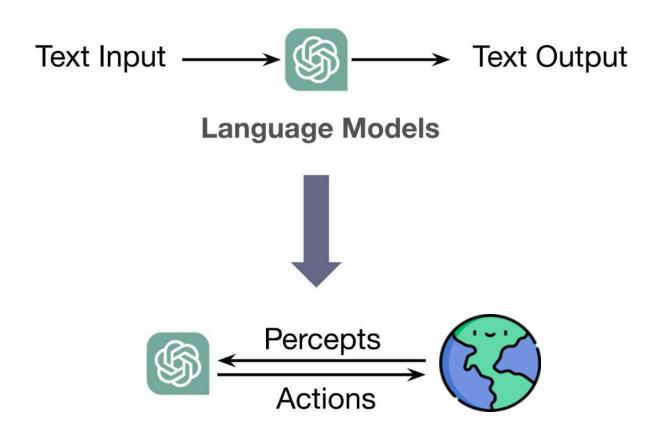
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization

AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant, ACL 2025

ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows


Build Computer Use Agents

They are quite promising for achieving Digital Automation through CLI or GUI.


Can we transform a (V)LM into such GUI agents?

Of course! But it is a non-trivial job!

Recap: Language Agents

Recap: Language Agents

LLM-based Agents

But this is not enough for Computer Use / GUI Agents.

Agents are promising, but building powerful agents is challenging.

- 1. Agents need to follow human instructions.
- 2. Agents need to perform planning and action.
- 3. Agents need to perceive envs. and the applications they are interacting with.

Best Way to build Computer Use Agents

Behavioral Cloning / Imitation Learning.

Sounds good, but where is our data?

Data Problems

Human annotation for GUI data is much more expensive than you think.

Not to mention scenario/domain - specific data.

How about having the machine collect data?

- 1. Pre-defined tasks are required, but they may not align with the environment.
- 2. Limited diversity and a poor success rate.

Data Scarcity

So, our goals are as follows:

- 1. Eliminate human involvement.
- 2. Obtain high-quality Trajectory data.
- 3. Diversity and Scalability.

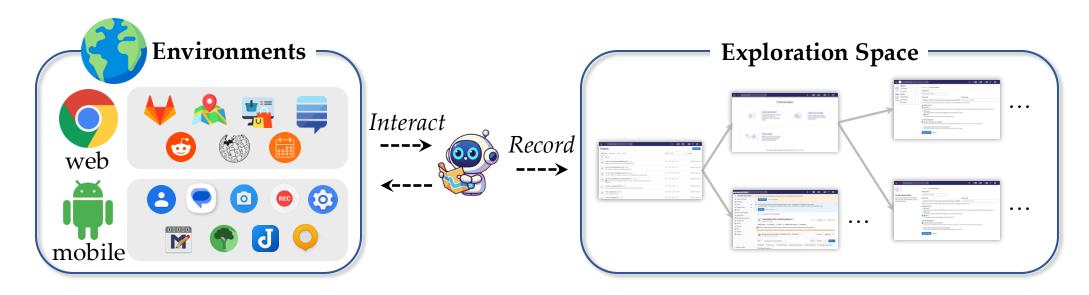
OS-Genesis Automating GUI Agent Trajectory Construction via Reverse Task Synthesis

Qiushi Sun*, Kanzhi Cheng*, Zichen Ding*, Chuanyang Jin*, Yian Wang Fangzhi Xu, Zhenyu Wu, Liheng Chen, Chengyou Jia, Zhoumianze Liu Ben Kao, Guohao Li, Junxian He, Yu Qiao, Zhiyong Wu

GUI Trajectory Data

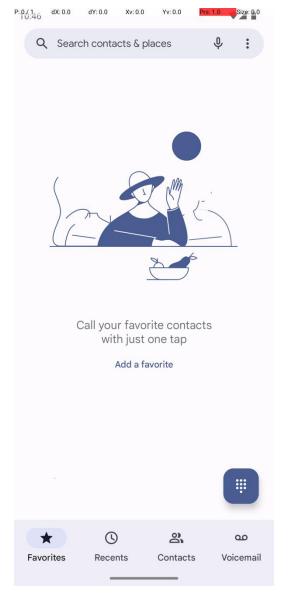
The best data format for GUI agents

- 1. A high-level instruction that defines the overall goal the agent aims to accomplish
- 2. A series of low-level instructions that each describe specific steps required
- 3. Actions (e.g., CLICK, TYPE) 🦭
- 4. States, which include visual representations like screenshots and textual representations such as allytree []

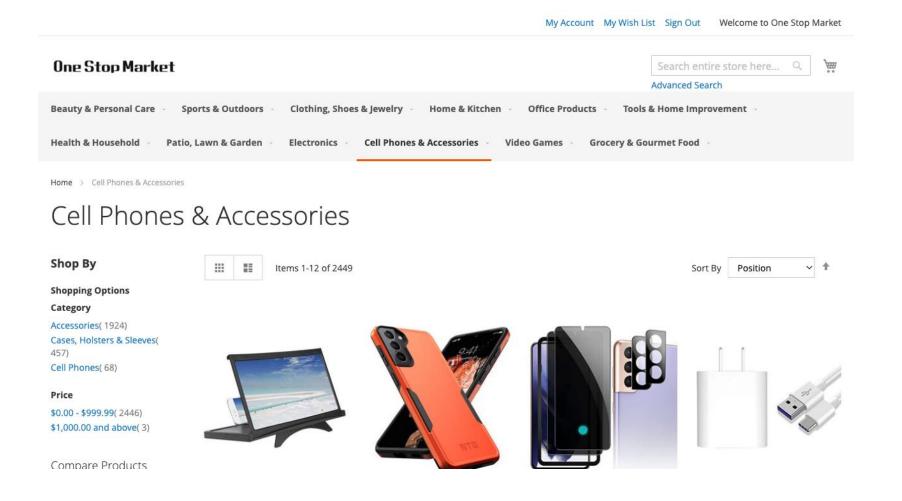

High-level Instruction

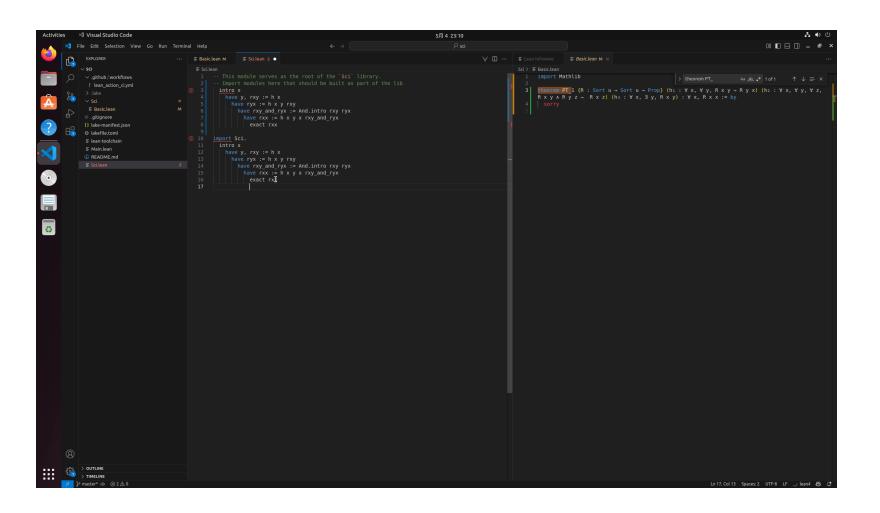
Mark the 'Avocado Toast with Egg' recipe as a favorite in the Broccoli app.

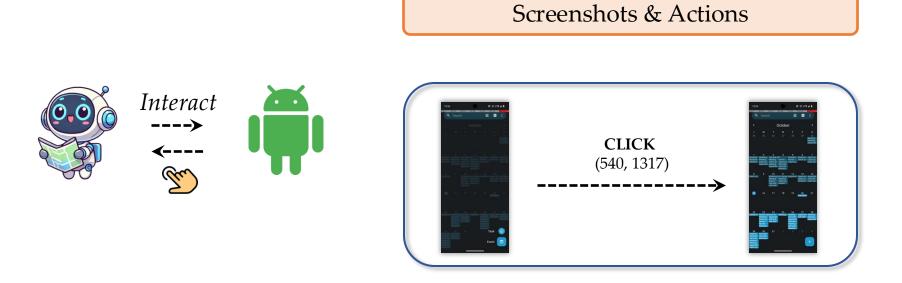
Interaction-Driven Functional Discovery is a rule-based process that explores dynamic GUI environments by interacting with UI elements. It uncovers functionalities through interaction triples


We collect: <Screen1, action, Screen2>

Dynamic Environments




Dynamic Environments



Dynamic Environments

Retroactively interpreting changes in the GUI environment caused by actions.

[organic green tea]

Retroactively interpreting changes in the GUI environment caused by actions, this process generates executable low-level instructions

results.

The data we synthesized:


- 1. Grounded
- 2. Actionable

Retroactively interpreting changes in the GUI environment caused by actions, this process generates executable low-level instructions, which are then transformed into broader, goal-oriented high-level tasks

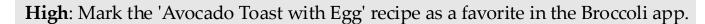
Screenshots & Actions

Low-level Instructions

High-level Instruction

Low: Click the 'Event' button to start adding a new event to the calendar.

High: In Simple Calendar Pro, create a new event titled 'Team Meeting' scheduled for October 15, 2023, at 10:00 AM. Save the event after filling in the details.

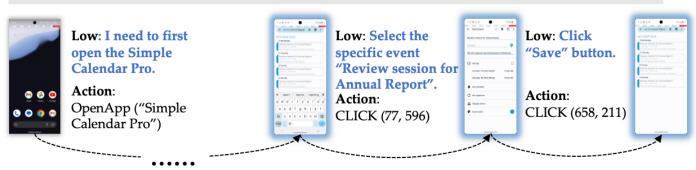


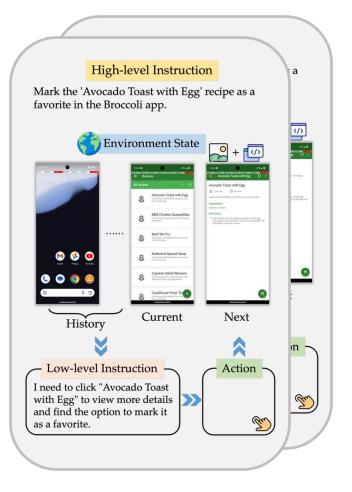
Low: Type 'organic green tea' and press Enter to view search results.

High: Search for 'organic green tea' and filter the results to show only products under the 'Health & Household' category, sorted by price from lowest to highest.

After reverse task synthesis generates task instructions, they are automatically executed in the GUI environment to build complete trajectories.

High: Set a reminder for the 'Review session for Annual Report' scheduled on October 18th in Simple Calendar Pro and save the changes.


Trajectories collected! But is this all?


Let's consider data quality and synthesis efficiency.

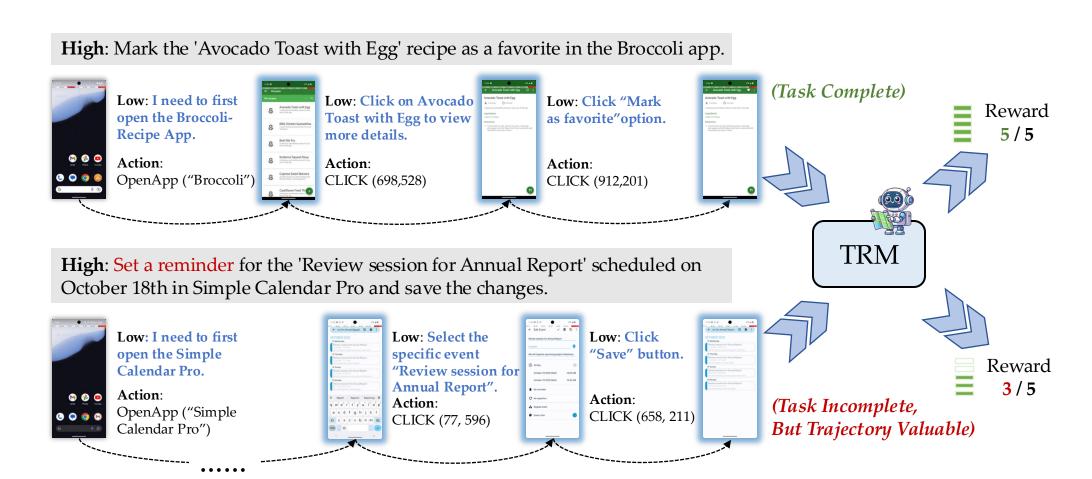
High: Mark the 'Avocado Toast with Egg' recipe as a favorite in the Broccoli app.

High: Set a reminder for the 'Review session for Annual Report' scheduled on October 18th in Simple Calendar Pro and save the changes.

Data Quality Control

Tasks are executed by machines, not all of them are successful.

Previous approach:


1. Training all data at once - what about the quality?

2. Discarding all incomplete Trajectories - what about the efficiency?

Thus, we introduce a Trajectory Reward Model to handle this.

Reward Modeling

We introduce a Trajectory Reward Model for weighted sampling in training.

Models

Data Synthesis

GPT-40

Qwen-VL Qwen2-VL-72B-Instruct

Backbones

Baselines

We adapt / build the following forward baselines

- Zero-Shot. Advanced prompting-based agents, such as M3A.
- Task-Driven. GUI Trajectories synthesized using pre-defined tasks. Given initial screenshots of the app/web page and task examples, use GPT-4 to generate high-level instructions and collect data.
- Self-Instruct. Builds on Task-Driven by adding self-instructed tasks.

Setting: Screenshot + A11ytree

Experiments: Mobile

Base Model	Strategies	AndroidWorld	AndroidControl-High AndroidControl-Low				
Dase Would			SR	Type	SR	Type	
GPT-40	Zero-Shot (M3A)	23.70	53.04	69.14	69.59	80.27	
InternVL2-4B	Zero-Shot	0.00	16.62	39.96	33.69	60.65	
	Task-Driven	4.02	27.37	47.08	66.48	90.37	
	Task-Driven w. Self Instruct	7.14	24.95	44.27	66.70	90.79	
	OS-Genesis	15.18	33.39	56.20	73.38	91.32	
InternVL2-8B	Zero-Shot	2.23	17.89	38.22	47.69	66.67	
	Task-Driven	4.46	23.79	43.94	64.43	89.83	
	Task-Driven w. Self Instruct	5.36	23.43	44.43	64.69	89.85	
	OS-Genesis	16.96	35.77	64.57	71.37	91.27	
Qwen2-VL-7B	Zero-Shot	0.89	28.92	61.39	46.37	72.78	
	Task-Driven	6.25	38.84	58.08	71.33	88.71	
	Task-Driven w. Self Instruct	9.82	39.36	58.28	71.57	89.73	
	OS-Genesis	17.41	44.54	66.15	74.17	90.72	

Table 1: Performance on AndroidWorld and AndroidControl benchmarks.

Findings: OS-Genesis + Opensource VLM > Propriety Models + Complex Prompting

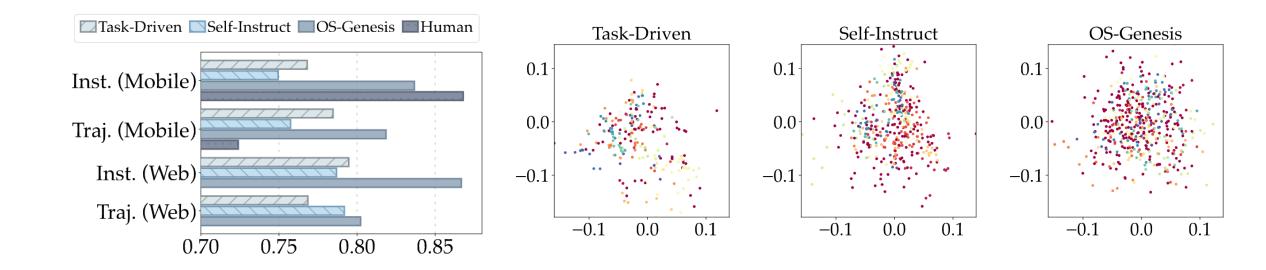
Experiments: Web

Base Model	Strategies	Shopping	CMS	Reddit	Gitlab	Maps	Overall
GPT-40	Zero-Shot	14.28	21.05	6.25	14.29	20.00	16.25
InternVL2-4B	Zero-Shot	0.00	0.00	0.00	0.00	0.00	0.00
	Task-Driven	5.36	1.76	0.00	9.52	5.00	4.98
	Task-Driven w. Self Instruct	5.36	3.51	0.00	9.52	7.50	5.81
	OS-Genesis	10.71	7.02	3.13	7.94	7.50	7.88
InternVL2-8B	Zero-Shot	0.00	0.00	0.00	0.00	0.00	0.00
	Task-Driven	3.57	7.02	0.00	6.35	2.50	4.56
	Task-Driven w. Self Instruct	8.93	10.53	6.25	7.94	0.00	7.05
	OS-Genesis	7.14	15.79	9.34	6.35	10.00	9.96
Qwen2-VL-7B	Zero-Shot	12.50	7.02	6.25	6.35	5.00	7.47
	Task-Driven	8.93	7.02	6.25	6.35	5.00	7.05
	Task-Driven w. Self Instruct	8.93	1.76	3.13	4.84	7.50	5.39
	OS-Genesis	7.14	8.77	15.63	15.87	5.00	10.79

Table 2: Performance on WebArena benchmarks.

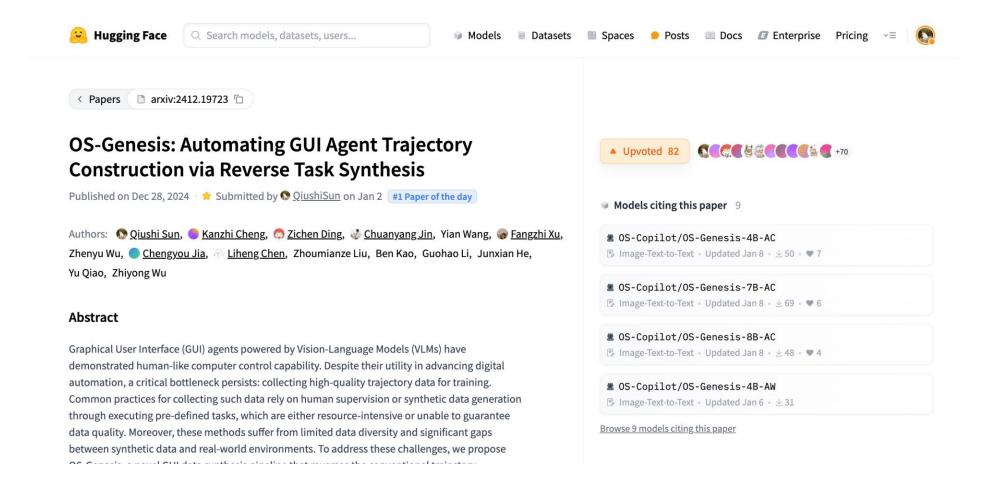
Analysis

How Far are we from Human Data?


Then, OS-Genesis v.s. Human-annotated Trajectories.

Insight: OS-Genesis achieves ~80% of human data's effectiveness.

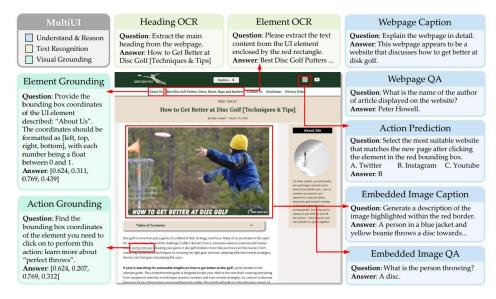
Analysis


How about our data diversity?

Insight: Significantly better than Forward methods and approaches the human level.

Checkpoints & Data Access

Available on Hugging Face



Next Step?

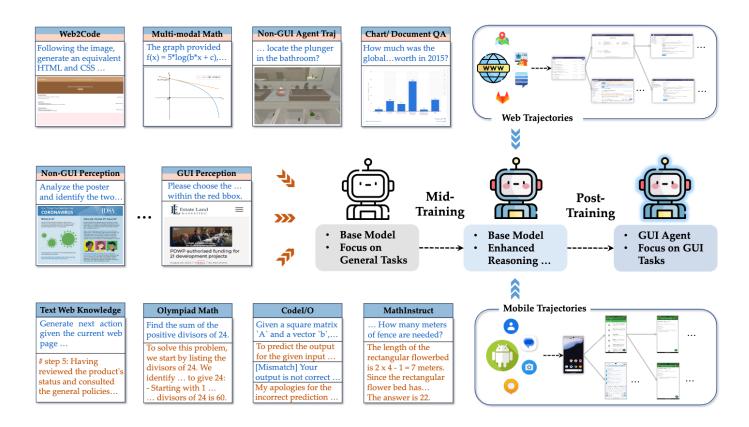
Beyond Planning and Action: What Else Do We Need?

GUI Trajectory Data

GUI Perception/Knowledge...

GUIMid

Beyond Planning and Action: What Else Do We Need?


Domains	Ability	Datasets	Samples	Туре			
Vision-and-Language Modality							
Chart/Document QA	Perception	InfographicVQA (Guo et al., 2024)	2,184	Instruction, Thought*, Answer			
		Ureader QA (Guo et al., 2024)	53,794	Instruction, Thought, Answer			
		MPDocVQA (Tito et al., 2023)	431	Instruction, Thought, Answer			
		MathV360k (Liu et al., 2024b)	93,591	Instruction, Thought, Answer			
Non-GUI Perception	Perception Ureader OCR (Ye et al., 2023)		6,146	Instruction, Thought*, Answer			
		DUE (Borchmann et al., 2021)	143,854	Instruction, Answer			
GUI Perception	Perception	MultiUI (Liu et al., 2024a)	150,000	Instruction, Answer			
Web Screenshot2Code	Perception	Web2Code (Yun et al., 2024)	150,000	Instruction, Answer			
Multi-modal Math	Reasoning	Mavis (Zhang et al., 2024b)	150,000	Instruction, Thought, Answer			
Multi-round Visual Conversation	Interaction	SVIT (Zhao et al., 2023)	150,000	Instruction, Thought, Answer			
Non-GUI Agent Trajectories	Interaction	AlfWorld (Guo et al., 2024)	51,780	Instruction, Thought, Answer			
Language Modality							
MathInstruct	Reasoning	MathInstruct (Yue et al., 2023)	150,000	Instruction, Thought, Answer			
Olympiad Math	Reasoning	NuminaMath (LI et al., 2024)	150,000	Instruction, Thought, Answer			
CodeI/O	Reasoning	CodeI/O (Li et al., 2025)	150,000	Instruction, Thought, Answer			
Web Knowledge Base	Web Knowledge Base Knowledge Syna		99,924	Instruction, Thought, Answer			
		AgentTrek (Xu et al., 2024a)	50,076	Instruction, Thought, Answer			

We have abundant non-GUI data available to enhance versatile abilities

Can we take advantage of these data-rich domains?

GUIMid

Breaking the Data Barrier – Building GUI Agents Through Task Generalization: arXiv 2504.10127

Mid-training: Training phrase between pre-training and post-training

GUIMid

Breaking the Data Barrier – Building GUI Agents Through Task Generalization: arXiv 2504.10127

Domains	Observation	WebArena		AndroidWorld				
		PR	SR	SR				
GUI Post-Training Only	Image	26.3	6.2	9.0				
	Public Baselines							
GPT-40-2024-11-20	Image	36.9	15.6	11.7				
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4				
AGUVIS-72B	Image	-	-	26.1				
Claude3-Haiku	Accessibility Tree	26.8	12.7	-				
Llama3-70b			12.6	-				
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-				
Vision-and-Language Modality								
Chart/ Document QA	Image	24.6	6.2	15.3				
Non-GUI Perception	Image	28.7	7.6	14.0				
GUI Perception	Image	27.4	7.1	14.0				
Web Screenshot2Code	Image	28.0	6.6	9.9				
Non-GUI Agents	Image	30.8	8.5	13.5				
Multi-modal Math √	Image	30.4	8.5	15.3				
Multi-round Visual Conversation	Image	30.0	9.0	12.6				
Language Modality								
MathInstruct √	Image	31.9	10.9	14.4				
Olympiad Math √	Image	31.5	8.5	13.1				
CodeĪ/O ✓	Image	29.2	9.0	14.9				
Web Knowledge Base	Image	31.3	9.5	9.0				
Domain Combination (Sampled data from √ domains)								
GUIMid	Image	34.3	9.5	21.2				

Mid-training: Training phrase between pre-training and post-training

Our Project

OS-Genesis

Automating GUI Agent Trajectory Construction via Reverse Task Synthesis

Introducing OS-Genesis, a *manual-free* data pipeline for synthesizing GUI agent trajectory. OS-Genesis is characterized by the following core features:

- Interaction-driven: Agents actively explore GUI environments through stepwise interactions to discover functionalities and generate data.
- Reverse Task Synthesis: OS-Genesis retroactively derives meaningful low/high-level task instructions from observed interactions and state changes, enabling the construction of diverse and executable trajectories without pre-defined tasks.
- **Trajectory Data:** We construct and release high-quality mobile and web trajectories to accelerate GUI agents research.
- **Performance**: OS-Genesis significantly outperforms other synthesis methods on benchmarks like AndroidWorld and WebArena.
- X arXiv Code Checkpoints Oata

Thanks for listening

Contact: qiushisun@connect.hku.hk