
Page 1

Code Intelligence

Qiushi Sun
qiushisun.github.io

@qiushi_sun

Page 2

The Rise and Potential of Neural Code Intelligence

Page 3

Large Language Models
We are quite familiar with them

Page 4

Large Language Models: for Code
Code variants of LLMs

Page 5

A Survey of Neural Code Intelligence:
Paradigms, Advances and Beyond

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Chang Ma, Kanzhi Cheng,
Zhangyue Yin, Jianing Wang, Chengcheng Han, Renyu Zhu,

Shuai Yuan, Pengcheng Yin, Qipeng Guo, Xipeng Qiu, Xiaoli Li,
Fei Yuan, Lingpeng Kong, Xiang Li, Zhiyong Wu

arXiv: 2403.14734 [v5] Sun, 26 Jan 2025

https://arxiv.org/abs/2403.14734

Page 6

The Develop Timeline of CodeLMs

1. An increasing number of researchers
are diving into

2. It is generally positively correlated
with the development of LMs.

Papers are usually pubed at:
1. ML venues: NIPS, ICLR, ICML …
2. NLP venues: *ACL, COLM, …
3. SE venues: ICSE, ASE, ISSTA, …

Page 7

The Develop Timeline of CodeLMs

A story through CodeLMs.

Page 8

Code-Related Tasks

How it starts?

Clone Detection Code Classification

Before LLMs, we were most focused on how to construct code representations.

Page 9

Code Representation Learning

The pastoral era of code generation and understanding

Page 10

Code-Related Tasks

How code differ from NL

Multiple views of Source Code

CODE-MVP: Learning to Represent Source Code from Multiple Views with Contrastive Pre-Training, NAACL 2022 Findings

Page 11

Solving Code-Related Tasks

How code differ from NL

CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure, EMNLP 2022 Findings

A Neural Network Architecture for Program Understanding Inspired by Human Behaviors, ACL 2022

“Enhanced” ASTs Another “Enhanced” ASTs

Section 2.1

Page 12

Typical CodeLMs before Transformer

TBCNN

A Novel Neural Source Code Representation Based on Abstract Syntax Tree, ICSE 2019

Convolutional Neural Networks over Tree Structures for Programming Language Processing, IJCAI 2016

ASTNN

Section 2.2

Page 13

Solving Code-Related Tasks Section 2.2

And more tasks …

Well, essentially, they all require task-specific modeling from scratch.

Page 14

The Paradigm Shift of CodeLMs

CodeLLM

Task B Task C Task A Task B Task C

❄

(1) Code Embeddings (2) Code Pre-trained Models (3) Large Language Models for Code

Prompt
CodePTM

Task A Task A Task B Task C Task D

Section 4

Page 15

The evolution from the perspective of models

Page 16

Code Pre-trained Models (CodePTMs) Section 3.1

Page 17

CuBERT and CodeBERT

CodeBERT: A code version of RoBERTa

Learning and Evaluating Contextual Embedding of Source Code, ICML 2020

CodeBERT: A Pre-Trained Model for Programming and Natural Languages, EMNLP 2020 Findings

CuBERT: A code version of BERT

Section 3.1

Page 18

GraphCodeBERT

GraphCodeBERT: Pre-training Code Representations with Data Flow, ICLR 2021

How about typical “BERT-Style” Training meets Code Structures

Section 3.1

Page 19

T5 and BART like CodePTMs

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation, EMNLP 2021

Unified Pre-training for Program Understanding and Generation, NAACL 2021

1. Standard denoising training for T5 and BART models
2. Identifier types can be used for sequence labeling learning
3. Seq2seq learning unique to code

- Deobfuscation
- Naturalization
- Mutual generation of code and comments

PLBART: Denoising Pre-training

Section 3.1

Page 20

Some issues
1. When introducing code features, changes to the vocabulary, input

format, or aVention paVerns often prevent generalization.

2. The generation capability is quite weak.

3. When adapting to downstream tasks, fine-tuning is typically
required.

Section 3.1

Page 21

If you want to learn more …
Check out this post I wrote during my UG thesis in 2022!

https://zhuanlan.zhihu.com/p/539929943

https://zhuanlan.zhihu.com/p/539929943

Page 22

Large Language Models for Code Section 4.1

Page 23

Large Language Models for Code Section 4.1

At early stage, training from scratch.

DeepSeek Coder V1

CodeGeeX V1

Page 24

Large Language Models for Code Section 4.1

Gradually…

h"ps://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Page 25

FIM Training for CodeLLMs Section 4.1

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Efficient Training of Language Models to Fill in the Middle, 2022

- Consistent with AR training, like GPT
- FIM (Fill-in-the-Middle) pretraining

Page 26

Large Language Models for Code Section 4.1

Qwen 2.5 Coder

CodeLLaMA

And Codex, PaLM Coder, DeepSeekCoder V2 …

Evaluating Large Language Models Trained on Code
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence

Page 27

Large Language Models for Code Section 4

Page 28

General-purpose Code Generation Section 4

Python Algorithmic Problems

(Example credit: talk by Pengcheng Yin)

Page 29

Competition Level Programming Section 4

APPS and CodeContests

Page 30

Code Generation to Domain-Specific Programs Section 4

Text-to-SQL

Page 31

Large Language Models for Code Section 4

The coding ability has obviously become stronger

but pure code training often sacrifices other performance aspects,
making the model impractical in the real world. For example:

Lemur: Harmonizing Natural Language and Code for Language Agents, ICLR 2024 Spotlight

Page 32

Balancing Coding and NL

LLaMA2 Lemur

Crystal 7B

Code-Centric
Pre-training

Phase2: 63% code from Stack

For Agentic Use

For Efficiency

Section 4.1

Lemur-Chat

90B Tokens

SFT

300K Tokens

Lemur: Harmonizing Natural Language and Code for Language Agents, ICLR 2024 Spotlight
CRYSTAL: Illuminating LLM Abilities on Language and Code, COLM 2024

Phase1: SlimPajama

Phase2: 37% NL
NL NL + Code

Page 33

CodeLLMs as Base

CodeGen-16B-mono MOSS

DeepSeek-Coder-Base-v1.5 7B DeepSeekMath 7B

120B Math Tokens

NL and Code Data

Chinese Tokens Pre-training

Early

Recent

Section 5.2

MOSS: An Open Conversational Large Language Model, Machine Intelligence Research
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Page 34

CodeLLMs as Base

Some findings

DeepSeek-Coder-Base-v1.5 7B DeepSeekMath 7B

120B Math Tokens

NL and Code Data

1. Code training or pre-training and tasks like math are largely not
mutually exclusive; in fact, they often enhance each other.

2. How to balance their proportions is very important.

Page 35

CodeLLMs as Base

More findings, beyond math

To Code, or Not To Code? Exploring Impact of Code in Pre-training

1. Non-code tasks, performance peaks on
average when the code proportion is 25%.

2. Excessive code reduces world knowledge

3. Code performance improves linearly as
the code proportion increases.

Page 36

Preference Optimization + Compiler feedback Section 4.4

Insufficient Priority on Correctness: In ambiguous cases, CodeLLMs fail to prioritize the
correct solution over an incorrect one.

Runtime Efficiency: The generated code, while functionally correct, may have performance
issues).

CodeDPO: Aligning Code Models with Self Generated and Verified Source Code
Compilable Neural Code Generation with Compiler Feedback

Page 37

The applications of Code Intelligence

The Application of
Code Intelligence

Software
Engineering AI4Science

Agents Reasoning

Page 38

Applications: Software Engineering Section 6.1

SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, ICLR 2024

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, NIPS 2024

Move beyond simple code generation

Real PRs from popular Python open-source repositories (e.g., Django, Flask, etc.),
ultimately filtering out valid task instances. Each task instance corresponds to a GitHub
Issue and its merged solution.

Page 39

Applications: Software Engineering Section 6.1

SWE-agent lets your LM autonomously use tools to:
1. Fix issues in real GitHub repositories,
2. perform tasks on the web,
3. find cybersecurity vulnerabilities (by solving

Capture The Flag challenges),
4. Custom Tasks

SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, ICLR 2024

SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, NIPS 2024

An LM interacting with a computer through an
agent-computer interface

Page 40

Applications: Software Engineering Section 6.1

OpenHands: Code Less, Make More

We are witnessing “Full-Stack” SE platforms

1. Modify code
2. Run commands
3. Browse the web
4. Call APIs
5. Even copy code snippets from StackOverflow.

OpenDevin / OpenHands

Page 41

Applications: Software Engineering Section 6.1

Claude 3.7 Sonnet and Claude Code, 25 Feb, 2025

SWE-bench: Can Language Models Resolve Real-World GitHub Issues?

More advanced models + frameworks Are “dominating” these benchmarks.

1. Claude 3.7 Sonnet
2. Scaffolding

Agentic coding

Page 42

Applications: Agents

OS-Copilot: Towards Generalist Computer Agents with Self-Improvement, LLM Agents Workshop @ ICLR 2024

Section 6.3

OS-Copilot: -> Code-based computer agents Framework

Page 43

Applications: Agents

What kind of issues these agents can solve?

1. API-interface available

2. CLI, like “Apple Script”

3. Numerical Calculataions

Generate code + Invoke API -> Solve computer task

OS-Copilot: Towards Generalist Computer Agents with Self-Improvement, LLM Agents Workshop @ ICLR 2024
SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models, NIPS 2023

Section 6.3

A case in SheetCopilot

Page 44

Applications: Agents

Executable Code Actions Elicit Better LLM Agents, LLM Agents Workshop @ ICLR 2024, Oral / ICML 2024

Section 6.3

Use executable code to consolidate LLM agents’ actions into a unified action space

Integrated with a Python interpreter, execute code actions and dynamically revise prior
actions or emit new actions upon new observations (e.g., code execution results) through
multi-turn interactions

CodeACT

Page 45

Applications: Agents

Executable Code Actions Elicit Better LLM Agents, LLM Agents Workshop @ ICLR 2024, Oral / ICML 2024

Section 6.3

In short: Fewer actions, better efficiency

Page 46

Applications: AI4Science

DeepSeek-Coder-Base-v1.5 7B DeepSeekMath 7B

120B Math Tokens

NL and Code Data

Models

DeepSeekProver

Synthesized ATP Data

8M Formal Statements

Methods
1. Biochemistry Discoveries.

2. Chemical programming languages -> automate the synthesis of chemical compounds.

Section 6.4

DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data, 2024

Page 47

Applications: AI4Science
Biochemistry Discoveries.

Section 6.4

BioCoder: A Benchmark for Bioinformatics Code Generation with Large Language Models, Bioinformatics 2024

Processing Bioinformatics-related GitHub repositories

Page 48

Applications: Reasoning

PAL: Program-aided Language Models, ICML 2023
Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks, TMLR (Oct, 2023)

Program-aided language models

Coding instead of CoT

Offload “Computation” to a
python interpreter

Page 49

Applications: Reasoning

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks, TMLR (Oct, 2023)
Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration, COLM 2024

Lot of techniques can be

1. Directly transferred to this
scenario

2. Combine together

LLMs like DeepSeekMath-Instruct leverage such math x
code data in training

Page 50

Resources

https://github.com/QiushiSun/Awesome-Code-Intelligence

Palatino%20Linotype

Page 51

Thanks for listening

Contact: qiushisun@connect.hku.hk

