

CAT-probing

A Metric-based Approach to Interpret How Pre-trained Models for Programming Language
Attend Code Structure

Nuo Chen*, Qiushi Sun*, Renyu Zhu*, Xiang Li † , Xuesong Lu and Ming Gao {nuochen, qiushisun, renyuzhu}@stu.ecnu.edu.cn {xli, xslu, mgao}@dase.ecnu.edu.cn

East China Normal University School of Data Science and Engineering

31 October 2022

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 № CAT-probing 1

Outline

Outline

Introduction

CAT-probing

Experiments

Conclusion

^{*}A pre-recorded presentation is available on YouTube

Backgrounds

Fig 1. Pre-trained language models

Pre-trained language models have advanced the state-of-the-art across a series of NLP tasks. The success of these models for NL(Natural Language) leads to their application in the PL(Programming Language) domain.

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 Y CAT-probing 3 3

Pre-trained Language Models for Code

Models	Inputs	Pre-training Tasks	Training Mode
RoBERTa	Natural Language(NL)	Masked Language Modeling(MLM)	Encoder-only
CodeBERT	NL-PL Pairs	MLM+Replaced Token Detection(RTD)	Encoder-only
GraphCodeBERT	NL-PL Pairs & AST	MLM+Edge Prediction+Node Alignment	Encoder-only
UniXcoder	NL-PL Pairs & Flattened AST	MLM ULM(Unidirectional Language Modeling) Denoising Objective(DNS)	Encoder & Decoder & Encoder-decoder

Table 1. The comparison of different language models mentioned in this paper.

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 ¥ CAT-probing 4

What leads to CodePTMs' success?

CodePTMs perform quite well on downstream tasks

- How can they achieve such stunning performance?
- Beyond text information, do these models learn structure information?
- Do these models focus on the same points for different programming languages?

Thus, From the perspective of code structures, **Can these models capture the programming language's structure information?**

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 FG CAT-probing

CAT-probing

Prior works

- Probing methods migrated from NLP
- Syntactic and semantic probing

CAT-probing

• One step forward, quantitatively evaluate how <u>CodePTMs' Attention scores relate to</u> distances between AST (Abstract Syntax Tree) nodes.

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 🕍 CAT-probing 6

CAT-probing: U-AST

Fig 2. U-AST

What is U-AST?

- Based on abstract syntax tree (AST)
- Connect adjacent leaf nodes (Data flow edges)
- Increases AST's connectivity

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 🙀 CAT-probing 7 /

Frequent Token Types

Language-specific frequent token types for four Programming languages.

Fig 3. Visualization of the frequent token types on four programming languages.

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 🦹 CAT-probing 8 / 18

CAT-probing: Token Selection

Table 2. Heatmaps of the averaged attention weights in the last layer before and after using token selection, including Go and Java code snippets (from top to bottom).

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 "☐ CAT-probing 9

CAT-probing: Code Matrices

- Attention Matrix: Constructed by token level attention scores.
- Distance Matrix: leaf nodes' distance of U-AST, Computed by shortest-path length.

Fig 4. Attention Matrix

Fig 5. Distance Matrix

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 🕌 CAT-probing 10 / 18

CAT-probing: CAT Score

A metric is designed to measure the capability of CodePTMs to attend code structure.

$$\mathsf{CAT\text{-}score} = \frac{\sum_{C} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{1}_{\mathbf{A}_{ij} > \theta_A \text{ and } \mathbf{D}_{ij} < \theta_D}}{\sum_{C} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{1}_{\mathbf{A}_{ij} > \theta_A \text{ or } \mathbf{D}_{ij} < \theta_D}}, \tag{1}$$

The CAT-score and the CodePTMs' capability of attending code structure should be positively correlated

CAT-probing: Task

Code Summarization

- Comprehend code
- Automatically generate descriptions

Fig 6. Code Summarization

One of the most essential tasks of code representation learning

CAT-probing Effectiveness

Comparison: CAT-scores and the models' performance

Fig 7. Comparisons between the CAT-score and the performance on code summarization task.

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 ¥ CAT-probing 13 / 18

Layer-wise CAT-score

(d) Python

Layer-wise CAT-score Cont'd

- As the layers increase, the CAT-scores decrease: some "special" tokens draw attention.
- ② The relative magnitude relationship (GraphCodeBERT > CodeBERT > RoBERTa) between CAT-score is almost determined on all the layers and PLs.
- Changes
 - Drastic change in middle layers, which are essential for transferring knowledge
 - In the last layers, CAT-scores gradually converge

Conclusion

- We proposed a novel probing method that can quantify the CodePTMs' ability to capture structural information.
- Experiments confirmed the feasibility of probing via attention distribution and code structure.
- Through CAT-probing, we obtained some interesting conclusions.

Limitation & Future works

Limitation

- Mainly focus on encoder-only CodePTMs
- Cannot completely avoid manual setting of hyperparameters

Future works

- Extend this probing method to more CodePTMs
- Create a unified probing method for different downstream tasks
- Design more general score functions

qiushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 \text{\text{\text{CAT-probing}}} CAT-probing 17

Thank You!

