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Fig 1. Pre-trained language models

Pre-trained language models have advanced the
state-of-the-art across a series of NLP tasks. The
success of these models for NL(Natural Language)
leads to their application in the PL(Programming
Language) domain.
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Pre-trained Language Models for Code

Models Inputs Pre-training Tasks Training Mode
RoBERTa Natural Language(NL) Masked Language Modeling(MLM) Encoder-only
CodeBERT NL-PL Pairs MLM-+Replaced Token Detection(RTD) Encoder-only
GraphCodeBERT NL-PL Pairs & AST MLM+Edge Prediction+Node Alignment Encoder-only
MLM Encoder &
UniXcoder NL-PL Pairs & Flattened AST ULM(Unidirectional Language Modeling) Decoder &
Denoising Objective(DNS) Encoder-decoder

Table 1. The comparison of different language models mentioned in this paper.

giushisun@stu.ecnu.edu.cn Findings of EMNLP 2022 & CAT-probing



. ERBEAE
Introduction EAST CHINA NORMAL
UNIVERSITY

What leads to CodePTMs' success?

CodePTMs perform quite well on downstream tasks
@ How can they achieve such stunning performance?
@ Beyond text information, do these models learn structure information?
@ Do these models focus on the same points for different programming languages?

Thus, From the perspective of code structures, Can these models capture the
programming language’s structure information?
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CAT-probing

Prior works
@ Probing methods migrated from NLP
@ Syntactic and semantic probing
CAT-probing
@ One step forward, quantitatively evaluate how CodePTMs' Attention scores relate to
distances between AST (Abstract Syntax Tree) nodes.
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def write (self, data):
self.tmpbuf.append(data)
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Frequen ken Types

Language-specific frequent token types for four Programming languages.
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Fig 3. Visualization of the frequent token types on four programming languages.
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Table 2. Heatmaps of the averaged attention weights in the last layer before and after using token
selection, including Go and Java code snippets (from top to bottom).
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T-probing: Code Matrices

@ Attention Matrix: Constructed by token level attention scores.

o Distance Matrix: leaf nodes' distance of U-AST, Computed by shortest-path length.
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Fig 4. Attention Matrix
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A metric is designed to measure the capability of CodePTMs to attend code structure.
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The CAT-score and the CodePTMs' capability of attending code structure should be positively
correlated

CAT-score =

(1)
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Code Summarization

@ Comprehend code

@ Automatically generate descriptions

def bubbleSort(arr):
n = len(arr)
foriinrange(n):
forjin range(0,n-i-1):
if arr[j] > arr[j+1]:
arr[jl, arr[j+1] = arr[j+1], arr[j]

Sort the input array

Fig 6. Code Summarization

One of the most essential tasks of code representation learning
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CAT-probing Effectiveness

Comparison: CAT-scores and the models’ performance
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Fig 7. Comparisons between the CAT-score and
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the performance on code summarization task.
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Fig 8. Layer-wise CAT-score results.
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Layer-wise CAT-score Cont'd

@ As the layers increase, the CAT-scores decrease: some "special” tokens draw attention.

@ The relative magnitude relationship (GraphCodeBERT > CodeBERT > RoBERTa)
between CAT-score is almost determined on all the layers and PLs.

© Changes

o Drastic change in middle layers, which are essential for transferring knowledge
o In the last layers, CAT-scores gradually converge
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Conclusion

@ We proposed a novel probing method that can quantify the CodePTMs' ability to capture
structural information.

@ Experiments confirmed the feasibility of probing via attention distribution and code
structure.

@ Through CAT-probing, we obtained some interesting conclusions.
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Limitation & Future works

Limitation

@ Mainly focus on encoder-only CodePTMs

@ Cannot completely avoid manual setting of hyperparameters
Future works

@ Extend this probing method to more CodePTMs

@ Create a unified probing method for different downstream tasks

@ Design more general score functions
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