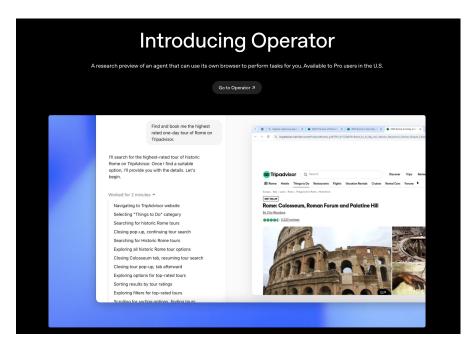

Towards Generalist Computer-using Agents:

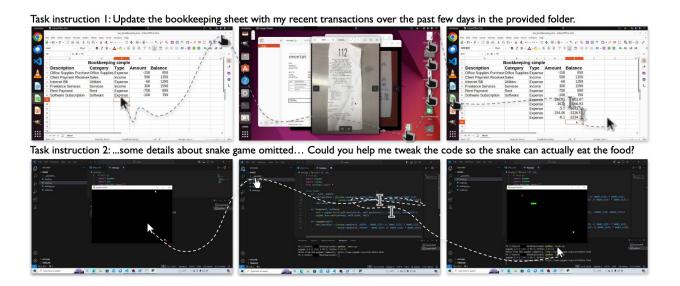
Models, Data, and Beyond

Qiushi Sun qiushisun.github.io

X @qiushi_sun


The Feasibility of Jarvis AI from Marvel in Real Life

Both academia and industry are building computer-using agents



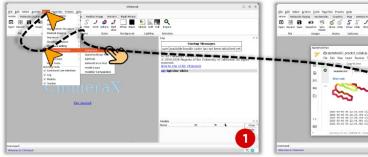
Claude Computer Use

Automating daily computer tasks

OpenAI Operator

Daily Computer Use

Playing Games



MineCraft II StarCraft II

Automate scientific workflows, be your co-scientist

Instruction: Predict the protein structure for the amino acid sequence of 'MGND...' via AlphaFold in ChimeraX.

The state of the s

pin pils selent geres garts regent menns gels

mens internative legister sind selection (seeks on selections) (seeks on selections)

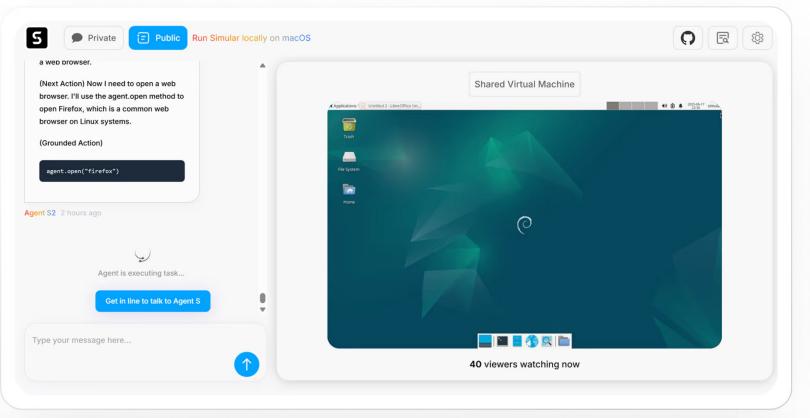
Step1: Toggle the widget of AlphaFold.

Step2: Input the given sequence and call out AlphaFold for structure prediction.

Step3: Wait until the prediction finished.

Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Select the Sol and click 'Goto' in contect menu.


Step2: Slide the mouse wheel to move the camera away from Sol.

Step3: Click to show orbits of planets.

Startups

Research Product About us Blog Discord Github macOS

Seminal works on Computer-Using Agents

SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents, ACL 2024

Foundation Models

OS-ATLAS: A Foundation Action Model for Generalist GUI Agents, ICLR 2025 Spotlight

OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis , $\frac{ACL}{2025}$

Data

Breaking the Data Barrier -- Building GUI Agents Through Task Generalization, COLM 2025

AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant, ACL 2025

Algorithm

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Evaluation

ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Frontier Application

OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows

Safety

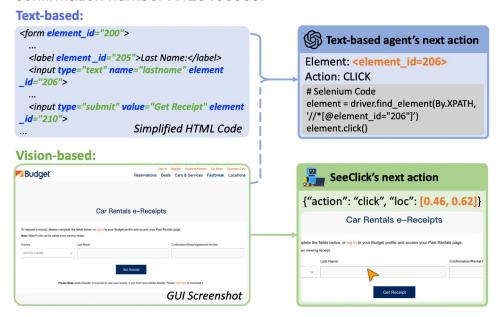
Generally, both GUI and CLI can enable computer use

(though they have different capability boundaries).

Today, our discussion focuses on GUI-based computer-using agents.

SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, Zhiyong Wu

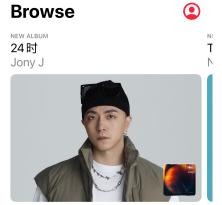


SeeClick: Overview

We built a purely visual GUI Agent Factor SeeClick, which interacts with GUIs through screenshots, does not require any structured information.

Just like Human!

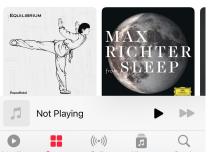
Instruction: Download the e-receipt with the last name Smith and confirmation number X123456989.


Input: Screenshots

Output: the action (with location)

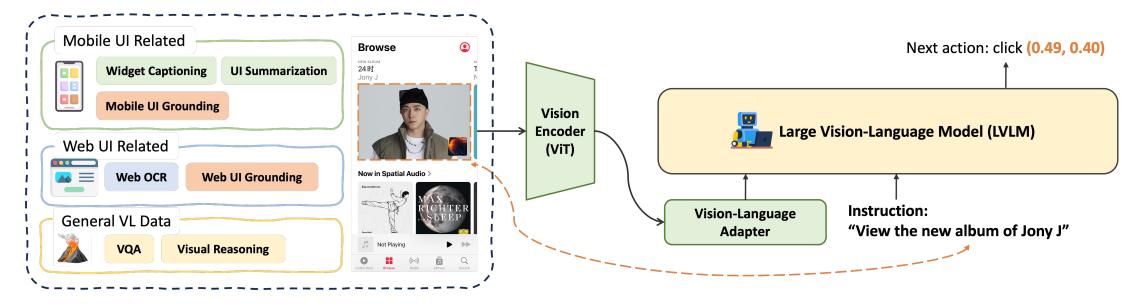
SeeClick: GUI Grounding

We discovered a key challenge in developing visual GUI agents: GUI grounding – the capacity to accurately locate screen elements based on instructions.


📠 SeeClick: (0.49, 0.40) 🔽

GPT-40 (an earlier version): hmmm... Sorry I don't know.

In order to view the new album of Jony J, where should I click?



How SeeClick is Built

Overview of SeeClick's framework and GUI grounding pre-training.

Uses ~1M GUI-specific samples combining web UI, mobile UI, and general vision-language data.

Includes **GUI grounding tasks**, such as predicting click points and generating element descriptions.

How SeeClick is Built

Web UI Grounding data

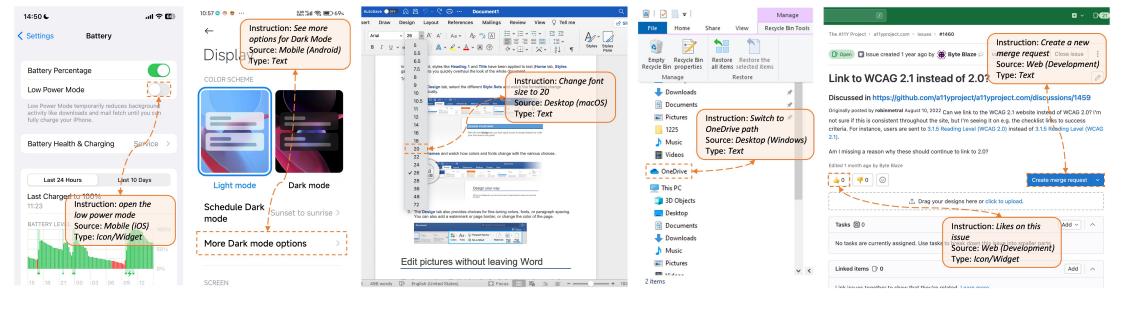
- 1. Crawled from large-scale web pages (~300K pages) instructions
- 2. Includes text elements and tooltip-based descriptions

Target: element localization from instructions p(y|s,x) and OCR-style text prediction p(x|s,y)

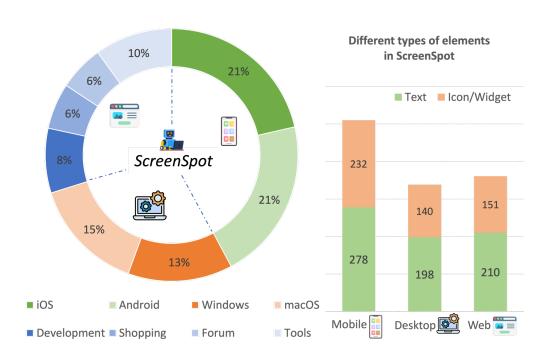
Mobile UI data

elements

- 1. Widget captioning and UI grounding from public datasets (e.g., RICO)
- 2. UI summarization to improve holistic interface understanding


General VL instruction data

- 1. Adopted from multi-purpose VL instruction-following corpora (e.g., LLaVA)
- 2. Supports preserving general reasoning and descriptive capabilities



The First Modern GUI Grounding Benchmark

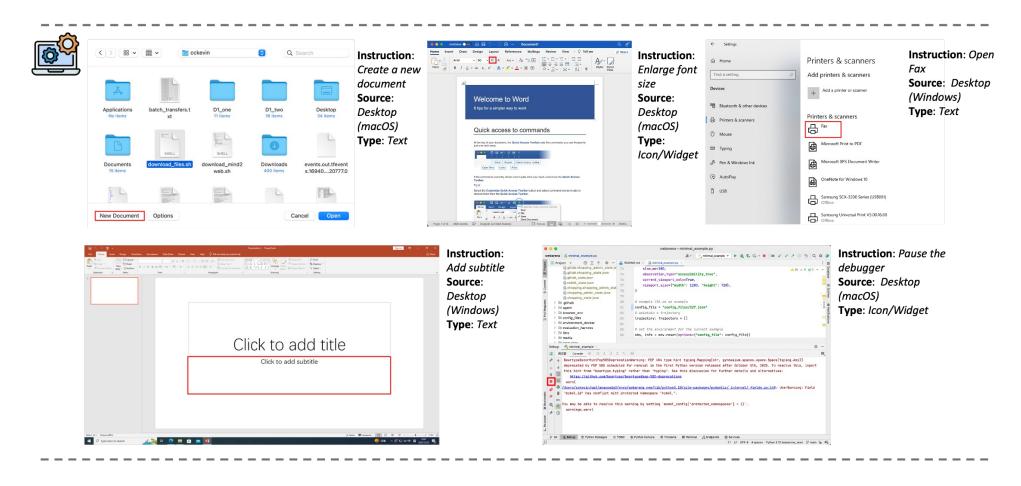
GUI Grounding Benchmark: *ScreenSpot*

The First Modern GUI Grounding Benchmark

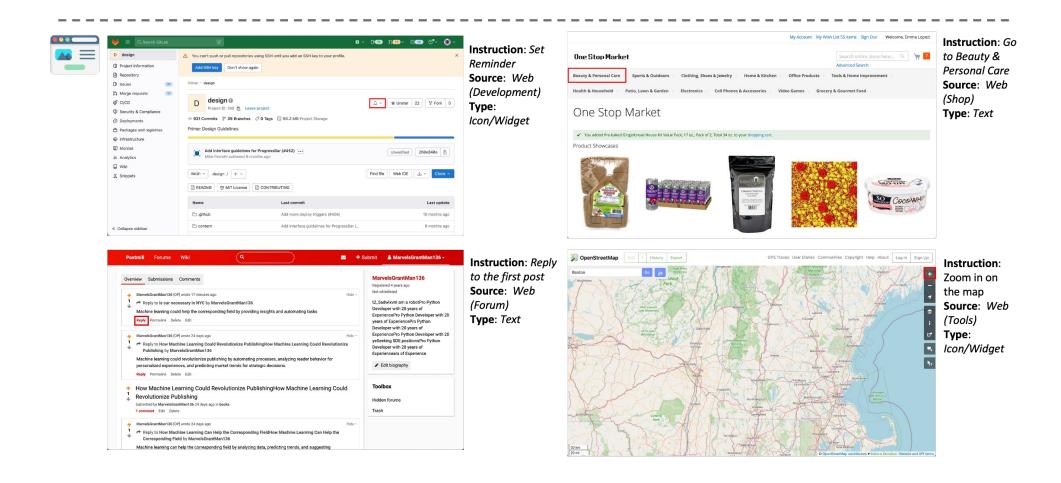
600+ screenshots and **1,200+ instructions** across mobile (iOS, Android), desktop (macOS, Windows), and web platforms.

Both text elements and icons/widgets

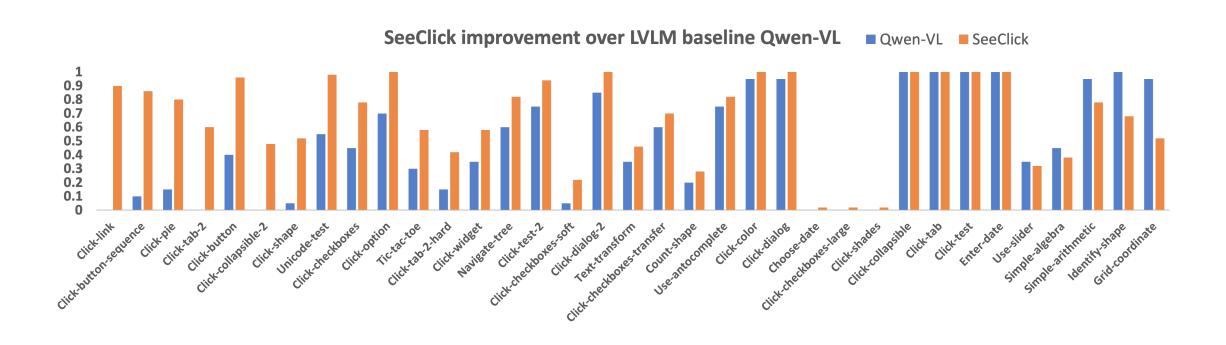
Collected from real-world apps and websites


ScreenSpot: Component

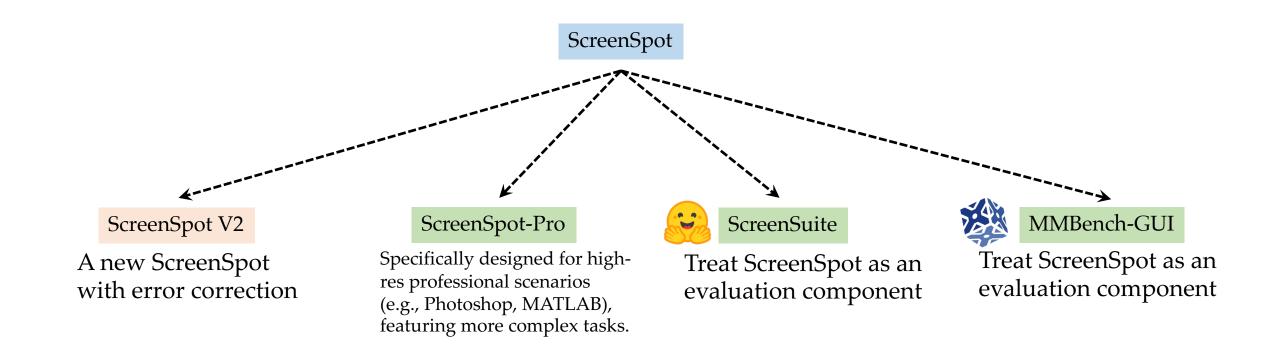
Mobile


ScreenSpot: Component

Desktop



ScreenSpot: Component


Web

Results on ScreenSpot

ScreenSpot's Far-reaching Impact

[8] OS-ATLAS: A Foundation Action Model For Generalist GUI Agents, ICLR 2025 Spotlight

[9] ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use

[10] ScreenSuite - The most comprehensive evaluation suite for GUI Agents!

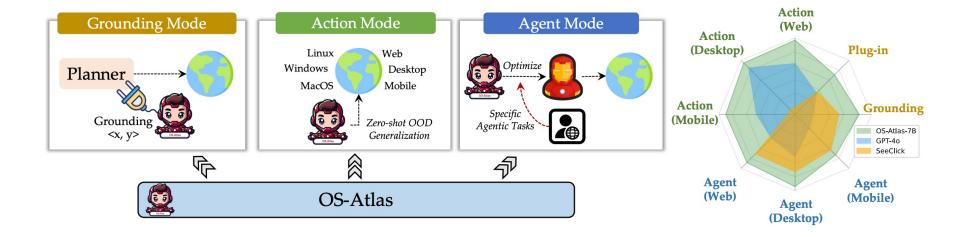
OS-ATLAS: A Foundation Action Model For Generalist GUI Agents

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding, Liheng Chen, Paul Pu Liang, Qiao Yu

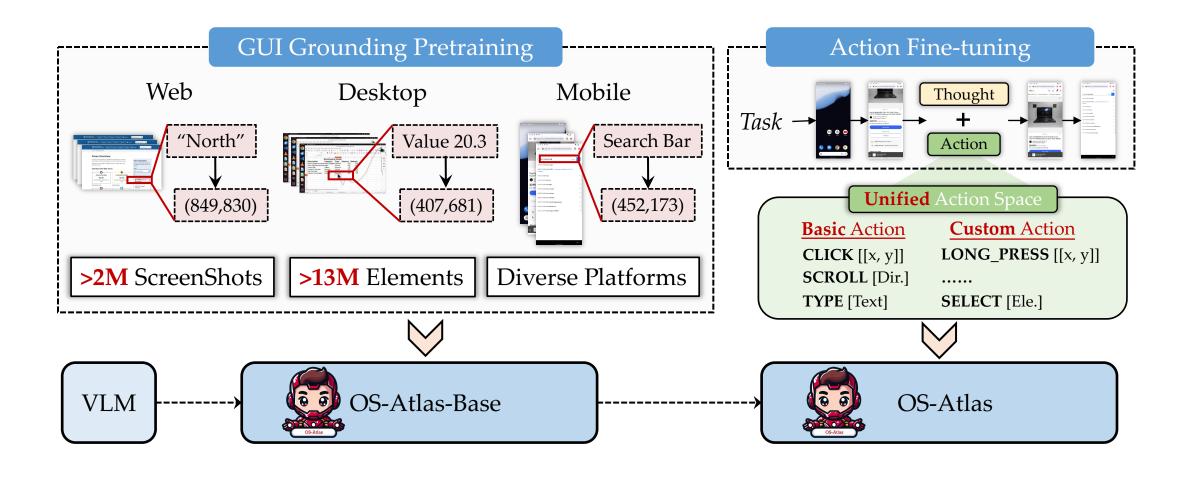
The Road of Building GUI Agent

Still, a vision-only solution

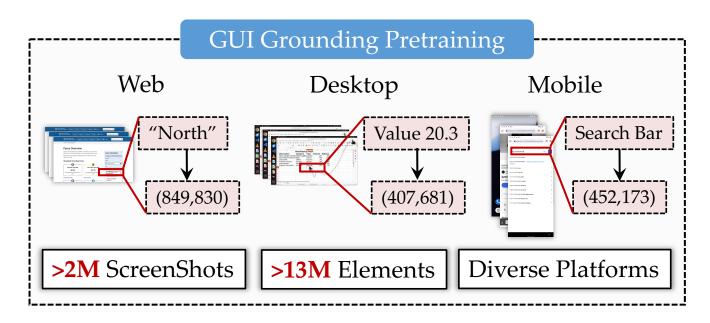
- Previous: html/a11ytree as states
- Trending: screenshots as states (human-like)


Importance of Large Action Model

Overview of OS-Atlas

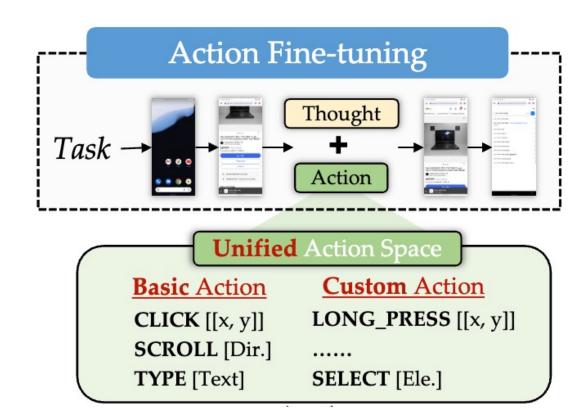

VLMs' Poor performance in GUI scenarios, because:

- Most existing VLMs are rarely pretrained on GUI screenshot images
- The heterogeneity of content and format in existing datasets



- Grounding Mode: Superior GUI Grounding and Plug-in with Planner
- Action Mode: Zero-shot Generalization on OOD tasks
- Agent Mode: DIY your own agent

Two-Stage Training


Infrastructure and Data Synthesis

Dataset	Web	#Screens Mobile	hots Desktop	Open Source	#Elements
SeeClick	270K	94K	-	√	3.3M
Ferret-UI	-	124K	-	X	<1M
GUICourse	73K	9K	-	\checkmark	10.7M
CogAgent	400K	-	-	X	70 M
OS-Atlas	1.9M	285K	54K	✓	13.58M

- The first multi-platform GUI grounding data synthesis toolkit, including:
 - Web Collected a large number of URLs from Common Crawl.
 - **Desktop** Windows, Linux and MacOS (integrated with OSWorld and uses random walk to collect trajectories).
 - **Mobile -** Android (integrated with AndroidWorld).
- Training set comprises over 2.3 M distinct screenshots and more than 13 M GUI elements.

Action-Finetuning Stage

- OS-Atlas-Base \rightarrow OS-Atlas
- Unified Action Space (Basic + Custom)
- Task-level Agent model

Experiments: GUI Grounding

Dlannan	Grounding Models	I	Mobile	I	Desktop		Awa	
Planner	Grounding Models	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	Avg.
	Fuyu	41.00	1.30	33.00	3.60	33.90	4.40	19.50
	CogAgent	67.00	24.00	74.20	20.00	70.40	28.60	47.40
	SeeClick	78.00	52.00	72.20	30.00	55.70	32.50	53.40
	InternVL-2-4B	9.16	4.80	4.64	4.29	0.87	0.10	4.32
-	Qwen2-VL-7B UGround-7B		39.29	52.01	44.98	33.04	21.84	42.89
			60.30	82.50	63.60	80.40	70.40	73.30
	OS-Atlas-Base-4B	85.71	58.52	72.16	45.71	82.61	63.11	70.13
	OS-Atlas-Base-7B		72.93	91.75	62.86	90.87	74.27	82.47
	SeeClick	83.52	59.39	82.47	35.00	66.96	35.44	62.89
GPT-40	UGround-7B	93.40	76.90	92.80	67.90	88.70	68.90	81.40
	OS-Atlas-Base-4B	94.14	73.80	77.84	47.14	86.52	65.53	76.81
	OS-Atlas-Base-7B	93.77	79.91	90.21	66.43	92.61	79.13	85.14

OS-Atlas-Base-7B achieves **SOTA** performance on ScreenSpot.

Experiments: Disentangled Planning and Action

Madala	Successful Rate										
Models	OS	Calc	Impress	Writer	VLC	TB	Chrome	VSC	GIMP	WF	Avg.
GPT-40 + SoM	20.83	0.00	6.77	4.35	6.53	0.00	4.35	4.35	0.00	3.60	4.59
GPT-40	8.33	0.00	6.77	4.35	16.10	0.00	4.35	4.35	3.85	5.58	5.03
+ SeeClick	16.67	0.00	12.76	4.35	23.52	6.67	10.86	8.70	11.54	7.92	9.21
+ OS-Atlas-Base-4B	20.83	2.23	14.89	8.70	23.52	13.33	15.22	13.04	15.38	7.92	11.65
+ OS-Atlas-Base-7B	25.00	4.26	17.02	8.70	29.41	26.67	19.57	17.39	19.23	8.91	14.63
Human	75.00	61.70	80.85	73.91	70.59	46.67	78.26	73.91	73.08	73.27	72.36

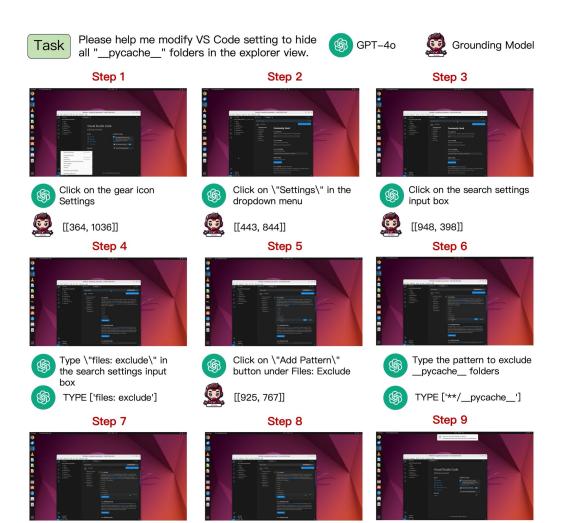
- GPT-40: 5% on OSWorld

- GPT-40 + OS-Atlas: 14.6%

Insight: next bottleneck? => complex reasoning and planning.

Experiments: Zero-shot and SFT

Web and Desktop


Models		GUI-Act-Web			OmniAct-Web OmniAct-Deskto				
Models	Type	Grounding	SR	Type	Grounding	SR	Type	Grounding	SR
			Zero	shot O	OD Setting				
GPT-40	77.09	45.02	41.84	79.33	42.79	34.06	79.97	63.25	50.67
OS-Atlas-4B	79.22	58.57	42.62	46.74	49.24	22.99	63.30	42.55	26.94
OS-Atlas-7B	86.95	75.61	57.02	85.63	69.35	59.15	90.24	62.87	56.73
			Supervis	sed Fine-	tuning Setting				
InternVL-2-4B	81.42	47.03	36.17	47.51	51.34	24.39	67.00	44.47	29.80
Qwen2-VL-7B	89.36	90.66	82.27	89.22	85.94	78.58	96.27	94.52	91.77
SeeClick	88.79	78.59	72.34	86.98	75.48	68.59	96.79	70.22	72.69
OS-Atlas-4B	89.36	89.16	81.06	88.56	82.00	73.91	96.51	85.53	84.78
OS-Atlas-7B	89.08	91.60	82.70	97.15	95.41	93.56	97.15	95.85	94.05

Mobile

Modela	And	droidControl-	Low	And	AndroidControl-High			GUI-Odyssey		
Models	Type	Grounding	SR	Type	Grounding	SR	Type	Grounding	SR	
			Zero	-shot OC	OD Setting					
GPT-40	74.33	38.67	28.39	63.06	30.90	21.17	37.50	14.17	5.36	
OS-Atlas-4B	64.58	71.19	40.62	49.01	49.51	22.77	49.63	34.63	20.25	
OS-Atlas-7B	73.00	73.37	50.94	57.44	54.90	29.83	60.42	39.74	26.96	
			Supervis	sed Fine-	tuning Setting					
InternVL-2-4B	90.94	84.05	80.10	84.09	72.73	66.72	82.13	55.53	51.45	
Qwen2-VL-7B	91.94	86.50	82.56	83.83	77.68	69.72	83.54	65.89	60.23	
SeeClick	93.00	73.42	75.00	82.94	62.87	59.11	70.99	52.44	53.92	
OS-Atlas-4B	91.92	83.76	80.64	84.69	73.79	67.54	83.47	61.37	56.39	
OS-Atlas-7B	93.61	87.97	85.22	85.22	78.48	71.17	84.47	67.80	61.98	

- OS-Atlas achieved SOTA
 performance across 3 different
 platforms, 6 distinct datasets, and
 2 evaluation settings (Zero-shot
 OOD and SFT).
- Huge superiority over GPT-40 under zero-shot OOD setting.

More Cases about GUI Tasks

Press Enter to confirm the

exclusion pattern

ENTER

Click on the \"OK\" button

to confirm the exclusion

[[1221,759]]

Close the settings tab using

the keyboard shortcut

HOTKEY [CTRL, "W"]

- OS-World
- Planner: GPT-40
- Action Model: OS-Atlas (7B)

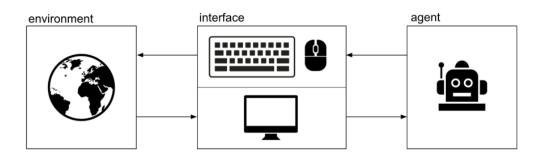
More Demos?

Please check out our homepage!

- https://osatlas.github.io/

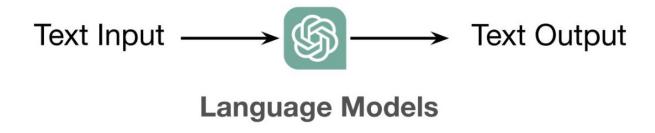
Next

We already have strong action / foundation models that map instructions to actions.

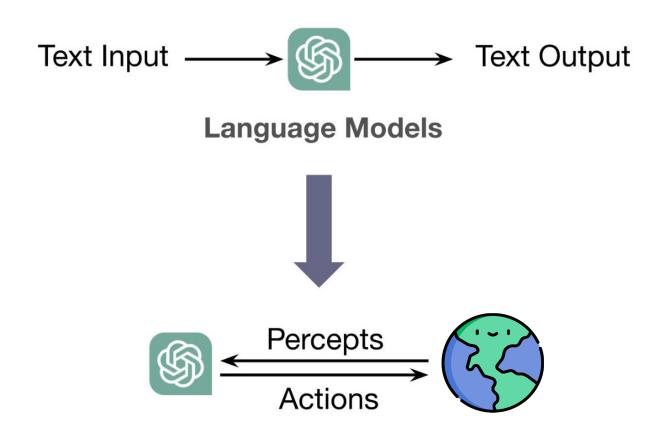

Now, we aim to empower agents with complete **Perception–Decision– Execution** capabilities.

Build Computer-using Agents

Quite promising to achieve digital automation in one model.


Can we transform a (V)LM into such GUI agents?

- 1. Perceive
- 2. Planning
- 3. Action



Of course! But it is a non-trivial job!

Recap: Language Agents

Recap: Language Agents

LLM-based Agents

But this is not enough for Computer-using / GUI Agents.

Agents are promising, but building powerful agents is challenging.

- 1. Agents need to follow human instructions.
- 2. Agents need to perform planning and action. The second second
- 3. Agents need to perceive envs. and the applications they are interacting with.

Best Way to build Computer-using Agents

Behavioral Cloning / Imitation Learning.

Sounds good, but where is our data?

Data Problems

Human annotation for GUI data is much more expensive than you think.

Not to mention scenario/domain - specific data.

How about having the machine collect data?

- 1. Pre-defined tasks are required, but they may not align with the environment.
- 2. Limited diversity and a poor success rate.

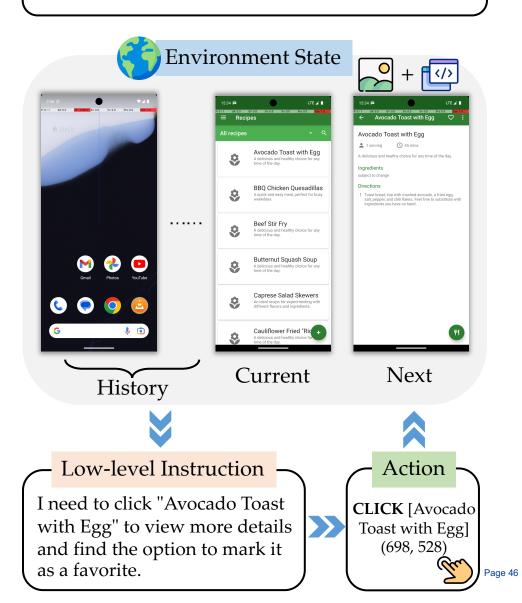
Data Scarcity

So, our goals are as follows:

- 1. Eliminate human involvement.
- 2. Obtain high-quality Trajectory data.
- 3. Diversity and Scalability.

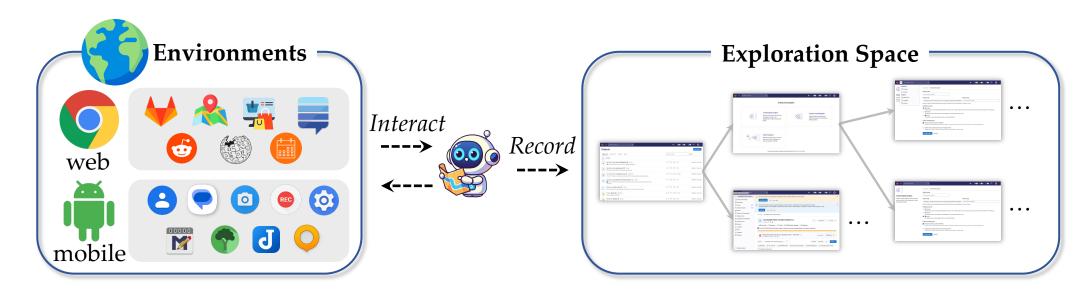
OS-Genesis Automating GUI Agent Trajectory Construction via Reverse Task Synthesis

Qiushi Sun*, Kanzhi Cheng*, Zichen Ding*, Chuanyang Jin*, Yian Wang Fangzhi Xu, Zhenyu Wu, Liheng Chen, Chengyou Jia, Zhoumianze Liu Ben Kao, Guohao Li, Junxian He, Yu Qiao, Zhiyong Wu


GUI Trajectory Data

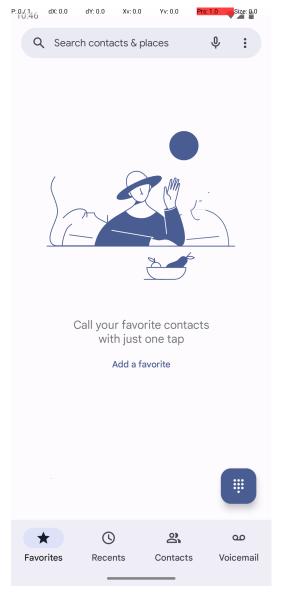
The best data format for GUI agents

- 1. A high-level instruction that defines the overall goal the agent aims to accomplish
- 2. A series of low-level instructions that each describe specific steps required
- 3. Actions (e.g., CLICK, TYPE) 🥙
- 4. States, which include visual representations like screenshots and textual representations such as allytree []

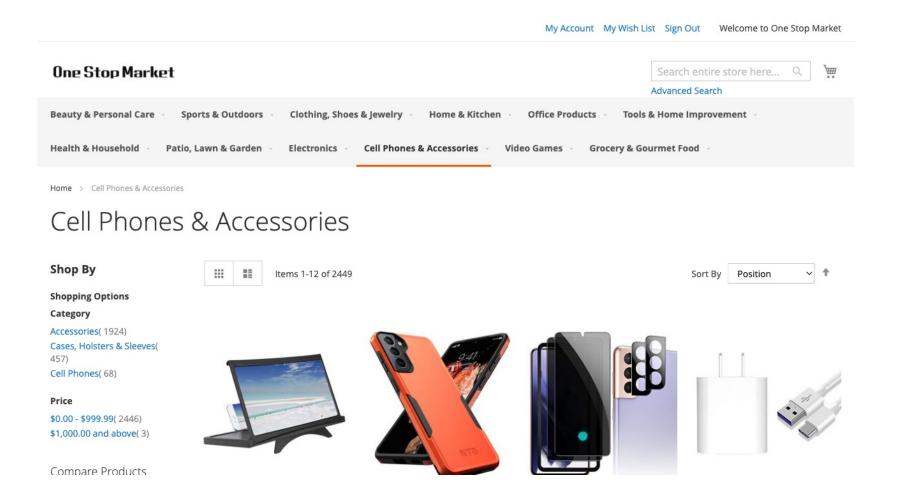

High-level Instruction

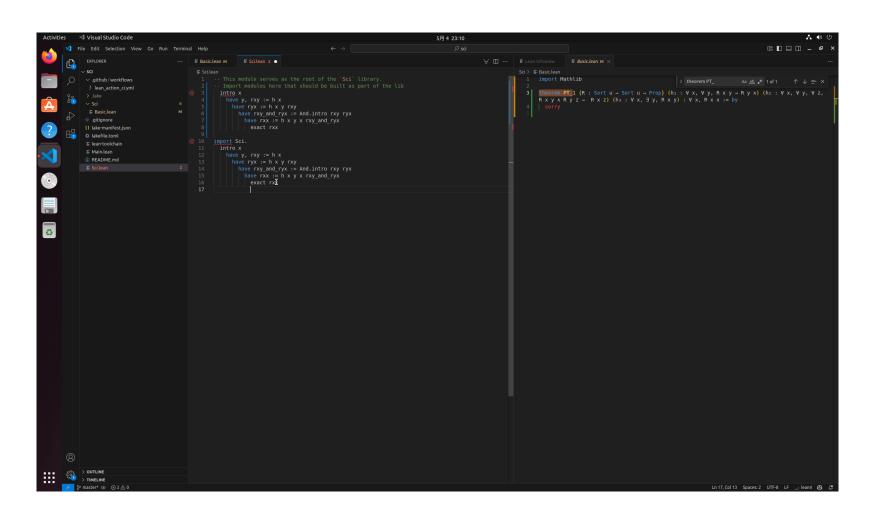
Mark the 'Avocado Toast with Egg' recipe as a favorite in the Broccoli app.

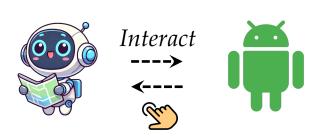
Interaction-Driven Functional Discovery is a rule-based process that explores dynamic GUI environments by interacting with UI elements. It uncovers functionalities through interaction triples


We collect: <Screen1, action, Screen2>

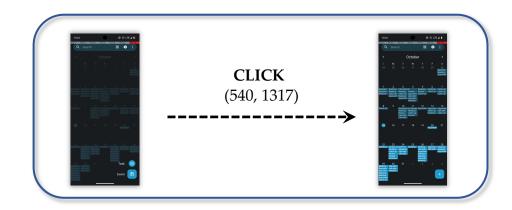
Dynamic Environments



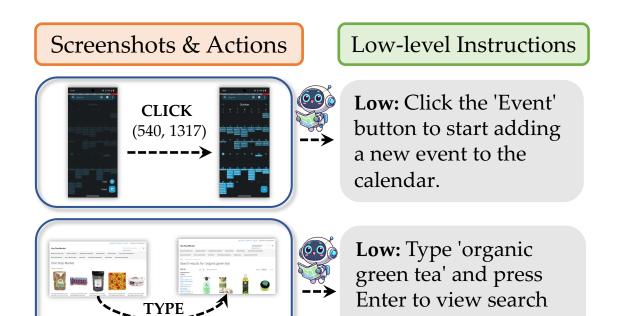

Dynamic Environments



Dynamic Environments



Retroactively interpreting changes in the GUI environment caused by actions.



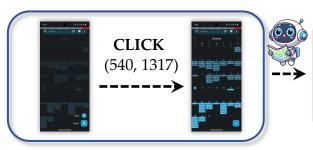
Screenshots & Actions

[organic green tea]

Retroactively interpreting changes in the GUI environment caused by actions, this process generates executable low-level instructions

results.

The data we synthesized:


- 1. Grounded
- 2. Actionable

Retroactively interpreting changes in the GUI environment caused by actions, this process generates executable low-level instructions, which are then transformed into broader, goal-oriented high-level tasks

Screenshots & Actions

Low-level Instructions

High-level Instruction

Low: Click the 'Event' button to start adding a new event to the calendar.

High: In Simple Calendar Pro, create a new event titled 'Team Meeting' scheduled for October 15, 2023, at 10:00 AM. Save the event after filling in the details.

Low: Type 'organic green tea' and press Enter to view search results.

High: Search for 'organic green tea' and filter the results to show only products under the 'Health & Household' category, sorted by price from lowest to highest.

After reverse task synthesis generates task instructions, they are automatically executed in the GUI environment to build complete trajectories.

High: Mark the 'Avocado Toast with Egg' recipe as a favorite in the Broccoli app.

High: Set a reminder for the 'Review session for Annual Report' scheduled on October 18th in Simple Calendar Pro and save the changes.

Trajectories collected! But is this all?

Let's consider data quality and synthesis efficiency.

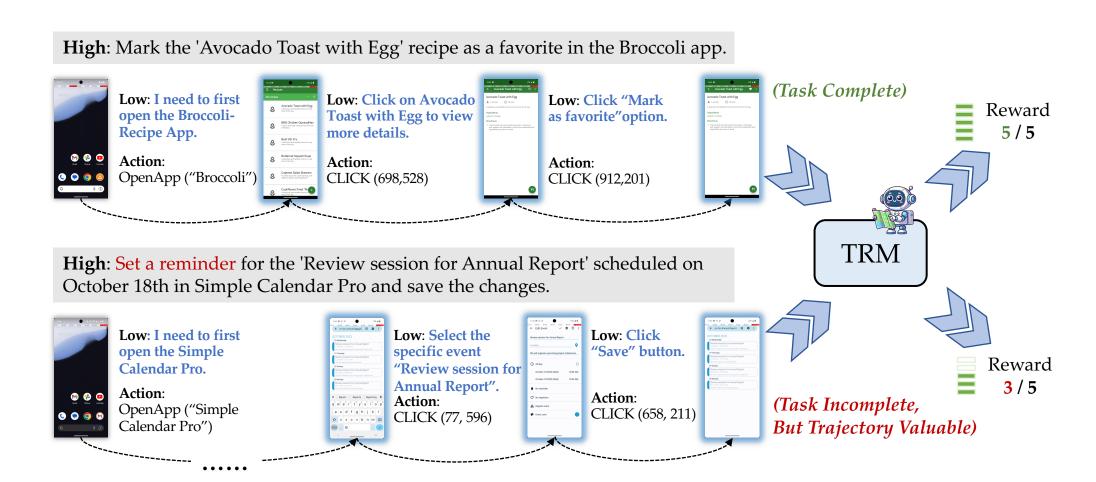
High: Mark the 'Avocado Toast with Egg' recipe as a favorite in the Broccoli app.

High: Set a reminder for the 'Review session for Annual Report' scheduled on October 18th in Simple Calendar Pro and save the changes.

Data Quality Control

Tasks are executed by machines, not all of them are successful.

Previous approach:


1. Training all data at once - what about the quality?

2. Discarding all incomplete Trajectories - what about the efficiency?

Thus, we introduce a Trajectory Reward Model to handle this.

Reward Modeling

We introduce a Trajectory Reward Model for weighted sampling in training.

Models

Data Synthesis

GPT-40

Qwen-VL Qwen2-VL-72B-Instruct

Backbones

Qwen-VL Qwen2-VL-7B-Instruct

Training Strategies

Leverage trajectory characteristics to train GUI agents with complete capabilities

1. Planning Training

1. I fairing High-level High-level
$$\mathcal{L}_1 = -\sum_{t_i \in \mathcal{T}} \log \left(p_{\theta}(\ell \mid s, h_i, c) \cdot p_{\theta}(a \mid s, h_i, c, \ell) \right)$$

2. Action Training Input Actions History

$$\mathcal{L}_2 = -\sum_{t_i \in \mathcal{T}} \log p_{\theta}(a \mid s, c, \ell)$$

Training Strategies

After Training, our agents will generate ReACT-Style output

Examples:

Step 1: To create a new folder in Markor, I need to first open the Markor app.

Step 2: To create a new folder, I need to click on the "Create a new file or folder" button, which is indicated by the plus icon.

```
action: { "action_type": "click", "x": 964.5, "y": 2074.5}
```

Step 3: I need to change the folder name to folder_20241224. The current text field for the folder name is visible and editable.

```
action:
```

```
{"action_type":"type","text":"folder_20241224","x":373.5,"y":552.0}
```

Baselines

We adapt / build the following forward baselines

- Zero-Shot. Advanced prompting-based agents, such as M3A.
- Task-Driven. GUI Trajectories synthesized using pre-defined tasks. Given initial screenshots of the app/web page and task examples, use GPT-4 to generate high-level instructions and collect data.
- Self-Instruct. Builds on Task-Driven by adding self-instructed tasks.

Setting: Screenshot + A11ytree

Experiments: Mobile

Base Model	Strategies	AndroidWorld	AndroidControl-High AndroidControl-Low				
Dase Model			SR	Type	SR	Type	
GPT-40	Zero-Shot (M3A)	23.70	53.04	69.14	69.59	80.27	
InternVL2-4B	Zero-Shot	0.00	16.62	39.96	33.69	60.65	
	Task-Driven	4.02	27.37	47.08	66.48	90.37	
	Task-Driven w. Self Instruct	7.14	24.95	44.27	66.70	90.79	
	OS-Genesis	15.18	33.39	56.20	73.38	91.32	
InternVL2-8B	Zero-Shot	2.23	17.89	38.22	47.69	66.67	
	Task-Driven	4.46	23.79	43.94	64.43	89.83	
	Task-Driven w. Self Instruct	5.36	23.43	44.43	64.69	89.85	
	OS-Genesis	16.96	35.77	64.57	71.37	91.27	
Qwen2-VL-7B	Zero-Shot	0.89	28.92	61.39	46.37	72.78	
	Task-Driven	6.25	38.84	58.08	71.33	88.71	
	Task-Driven w. Self Instruct	9.82	39.36	58.28	71.57	89.73	
	OS-Genesis	17.41	44.54	66.15	74.17	90.72	

Table 1: Performance on AndroidWorld and AndroidControl benchmarks.

Findings: OS-Genesis + Opensource VLM > Propriety Models + Complex Prompting

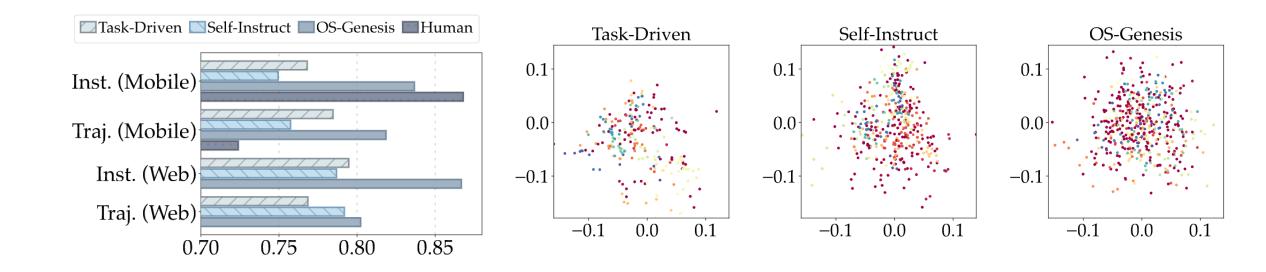
Experiments: Web

Base Model	Strategies	Shopping	CMS	Reddit	Gitlab	Maps	Overall
GPT-40	Zero-Shot	14.28	21.05	6.25	14.29	20.00	16.25
InternVL2-4B	Zero-Shot	0.00	0.00	0.00	0.00	0.00	0.00
	Task-Driven	5.36	1.76	0.00	9.52	5.00	4.98
	Task-Driven w. Self Instruct	5.36	3.51	0.00	9.52	7.50	5.81
	OS-Genesis	10.71	7.02	3.13	7.94	7.50	7.88
InternVL2-8B	Zero-Shot	0.00	0.00	0.00	0.00	0.00	0.00
	Task-Driven	3.57	7.02	0.00	6.35	2.50	4.56
	Task-Driven w. Self Instruct	8.93	10.53	6.25	7.94	0.00	7.05
	OS-Genesis	7.14	15.79	9.34	6.35	10.00	9.96
Qwen2-VL-7B	Zero-Shot	12.50	7.02	6.25	6.35	5.00	7.47
	Task-Driven	8.93	7.02	6.25	6.35	5.00	7.05
	Task-Driven w. Self Instruct	8.93	1.76	3.13	4.84	7.50	5.39
	OS-Genesis	7.14	8.77	15.63	15.87	5.00	10.79

Table 2: Performance on WebArena benchmarks.

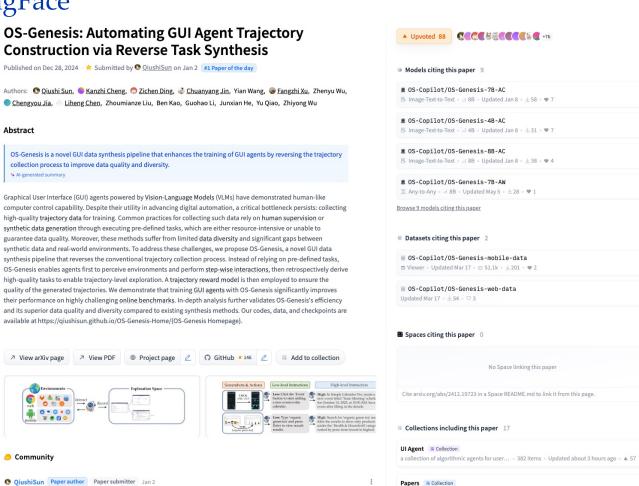
Analysis

How Far are we from Human Data?


Then, OS-Genesis v.s. Human-annotated Trajectories.

Insight: OS-Genesis achieves ~80% of human data's effectiveness.

Analysis


How about our data diversity?

Insight: Significantly better than Forward methods and approaches the human level.

Checkpoints & Data Access

Available on HuggingFace

This paper introduces OS-Genesis, an interaction-driven pipeline for synthesizing high-quality and diverse GUI agent trajectory data without human supervision or predefined tasks. By leveraging reverse task synthesis and a trajectory reward model, OS-

Genesis enables effective end2end training of GUI agents.

540 items - Updated 3 days ago - △ 11

82 items - Updated Apr 24 - △ 7

n Reply

Synthetic Data and Self-Improvement = Collection

Our Project

OS-Genesis

Automating GUI Agent Trajectory Construction via Reverse Task Synthesis

Introducing OS-Genesis, a *manual-free* data pipeline for synthesizing GUI agent trajectory. OS-Genesis is characterized by the following core <u>features</u>:

- Interaction-driven: Agents actively explore GUI environments through stepwise interactions to discover functionalities and generate data.
 - Reverse Task Synthesis: OS-Genesis retroactively derives meaningful low/high-level task instructions from observed interactions and state changes, enabling the construction of diverse and executable trajectories without pre-defined tasks.
- **Trajectory Data**: We construct and release high-quality mobile and web trajectories to accelerate GUI agents research.
- Performance: OS-Genesis significantly outperforms other synthesis methods on benchmarks like AndroidWorld and WebArena.

中文解读 (OS-Genesis)

Another Solution for Data Scarcity?

OS-Genesis is cool!

However, there are still limitations — for example, the type of synthetic data is constrained by the environment itself.

A single environment may reach its limit after producing just tens of 10K samples.

Can we push it even further?

GUI Trajectory Data

Issue: Although we have collected more trajectory data, it still remains limited compared to general LLM/VLM tasks.

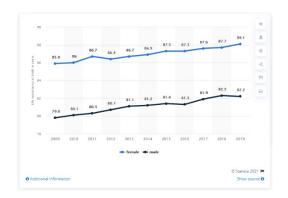
Domains	Datasets	Samples	Type
Web	OS-Genesis (Web) (Sun et al., 2024b)	3,789	Instruction, Thought, Action
	MM-Mind2Web (Zheng et al., 2024a)	21,542	Instruction, Thought, Action
	VisualWebArena (Koh et al., 2024a)	3,264	Instruction, Thought, Action
Mobile	OS-Genesis (Mobile) (Sun et al., 2024b)	4,941	Instruction, Thought, Action
	Aguvis (Xu et al., 2024b)	22,526	Instruction, Thought, Action

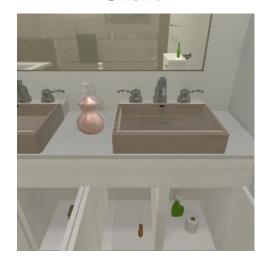
Table 2: Statistics of the web/mobile domains along with the corresponding GUI trajectory datasets used in post-training.

RQ: Is it possible to leverage "external forces" to further enhance the use of GUI data?

Breaking the Data Barrier – Building GUI Agents Through Task Generalization

Junlei Zhang*; Zichen Ding*, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, Junxian He





However, we have abundant non-GUI data available to enhance versatile abilities, such as complex reasoning

Can we take advantage of these data-rich domains?

Chart

Embodied

Prove that the sum of the squares of the lengths of the medians of a tetrahedron is equal to 4/9 of the sum of the squares of the lengths of its edges.

Text Math

Multi-modal Math

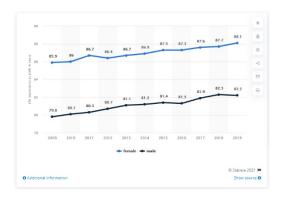
We introduce **Mid-Training** to the GUI Agent training:

Mid-Training refers to the training phrase between pre-training and post-training, enhance the fundamental abilities of models

Chart

Embodied

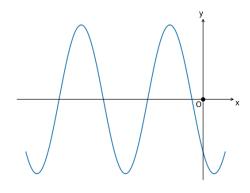
Prove that the sum of the squares of the lengths of the medians of a tetrahedron is equal to 4/9 of the sum of the squares of the lengths of its edges.


Text Math

Multi-modal Math

Mid-training with Non-GUI data:

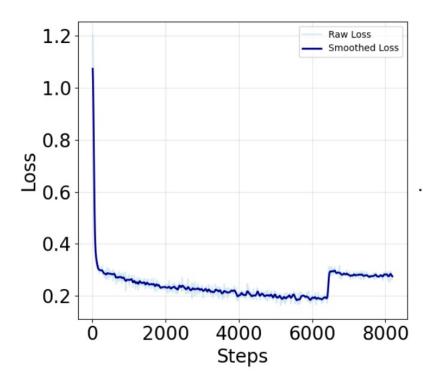
- 1. Naively training on non-GUI data, then post-training on GUI data can lead to gradient conflicts.
- 2. What kinds of domains should we use?


Chart

Embodied

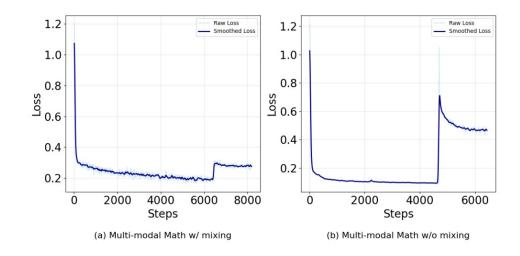
Prove that the sum of the squares of the lengths of the medians of a tetrahedron is equal to 4/9 of the sum of the squares of the lengths of its edges.

Text Math


Multi-modal Math

So, our goals are as follows:

- 1. Discover generalizable non-GUI domains
- 2. Design stable training methods.
- 3. Combine the generalizable to obtain larger mid-training dataset.


Mid-Training

- 1. We concatenate mid-training data with GUI trajectory and train sequentially. Both stages are integrated under a single optimizer and learning rate.
- 2. We mix the GUI trajectory into the midtraining data during the mid-training stage, to stabilize the training.

Mid-Training

- 1. We concatenate mid-training data with GUI trajectory and train sequentially. Both stages are integrated under a single optimizer and learning rate.
- 2. We mix the GUI trajectory into the midtraining data during the mid-training stage, to stabilize the training.

Mid-Training

We adapt the following baselines:

- **Fine-tuned Qwen2-VL-7B-Instruct.** We post-train Qwen2-VL-7B-Instruct directly as the baseline.
- **GPT-40**.

Domains	Observation	Web	Arena	AndroidWorld
		PR	SR	SR
GUI Post-Training Only	Image	26.3	6.2	9.0
GPT-40-2024-11-20	Image	36.9	15.6	11.7
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4
AGUVIS-72B	Image	-	-	26.1
Claude3-Haiku	Accessibility Tree	26.8	12.7	-
Llama3-70b	Accessibility Tree	35.6	12.6	_
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-
Visi	on-and-Language Modality			
Chart/ Document QA	Image	24.6	6.2	15.3
Non-GUI Perception	Image	28.7	7.6	14.0
GUI Perception	Image	27.4	7.1	14.0
Web Screenshot2Code	Image	28.0	6.6	9.9
Non-GUI Agents	Image	30.8	8.5	13.5
Multi-modal Math √	Image	30.4	8.5	15.3
Multi-round Visual Conversation	Image	30.0	9.0	12.6
	Language Modality			
MathInstruct √	Image	31.9	10.9	14.4
Olympiad Math √	Image	31.5	8.5	13.1
CodeI/O √	Image	29.2	9.0	14.9
Web Knowledge Base	Image	31.3	9.5	9.0
Domain Combi	nation (Sampled data from	/ doma	ins)	
GUIMid	Image	34.3	9.5	21.2

Domains	Observation	Web	Arena	AndroidWorld
		PR	SR	SR
GUI Post-Training Only	Image	26.3	6.2	9.0
	Public Baselines			
GPT-40-2024-11-20	Image	36.9	15.6	11.7
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4
AGUVIS-72B	Image	-	-	26.1
Claude3-Haiku	Accessibility Tree	26.8	12.7	-
Llama3-70b	Accessibility Tree	35.6	12.6	_
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-
Visi	on-and-Language Modality			
Chart/ Document QA	Image	24.6	6.2	15.3
Non-GUI Perception	Image	28.7	7.6	14.0
GUI Perception	Image	27.4	7.1	14.0
Web Screenshot2Code	Image	28.0	6.6	9.9
Non-GUI Agents	Image	30.8	8.5	13.5
Multi-modal Math √	Image	30.4	8.5	15.3
Multi-round Visual Conversation	Image	30.0	9.0	12.6
	Language Modality			
MathInstruct √	Image	31.9	10.9	14.4
Olympiad Math √	Image	31.5	8.5	13.1
CodeI/O √	Image	29.2	9.0	14.9
Web Knowledge Base	Image	31.3	9.5	9.0
Domain Combi	nation (Sampled data from	/ doma	ins)	
GUIMid	Image	34.3	9.5	21.2

Our 7B baselines achieve a comparable performance on AW, but relatively lower results on Web.

Domains	Observation	Web	Arena	AndroidWorld
		PR	SR	SR
GUI Post-Training Only	Image	26.3	6.2	9.0
	Public Baselines			
GPT-40-2024-11-20	Image	36.9	15.6	11.7
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4
AGUVIS-72B	Image	-	-	26.1
Claude3-Haiku	Accessibility Tree	26.8	12.7	-
Llama3-70b	Accessibility Tree	35.6	12.6	-
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-
Visi	on-and-Language Modality			
Chart/ Document QA	Image	24.6	6.2	15.3
Non-GUI Perception	Image	28.7	7.6	14.0
GUI Perception	Image	27.4	7.1	14.0
Web Screenshot2Code	Image	28.0	6.6	9.9
Non-GUI Agents	Image	30.8	8.5	13.5
Multi-modal Math √	Image	30.4	8.5	15.3
Multi-round Visual Conversation	Image	30.0	9.0	12.6
	Language Modality			
MathInstruct √	Image	31.9	10.9	14.4
Olympiad Math √	Image	31.5	8.5	13.1
CodeI/O √	Image	29.2	9.0	14.9
Web Knowledge Base	Image	31.3	9.5	9.0
Domain Combi	nation (Sampled data from	√ doma	ins)	
GUIMid	Image	34.3	9.5	21.2

Generally, the similar domains (e.g. Document QA) do not help much on the Web, though they help some in the mobile tasks.

Domains	Observation	Web	Arena	AndroidWorld
		PR	SR	SR
GUI Post-Training Only	Image	26.3	6.2	9.0
	Public Baselines			
GPT-40-2024-11-20	Image	36.9	15.6	11.7
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4
AGUVIS-72B	Image	-	-	26.1
Claude3-Haiku	Accessibility Tree	26.8	12.7	-
Llama3-70b	Accessibility Tree	35.6	12.6	_
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-
Visi	on-and-Language Modality			
Chart/ Document QA	Image	24.6	6.2	15.3
Non-GUI Perception	Image	28.7	7.6	14.0
GUI Perception	Image	27.4	7.1	14.0
Web Screenshot2Code	Image	28.0	6.6	9.9
Non-GUI Agents	Image	30.8	8.5	13.5
Multi-modal Math √	Image	30.4	8.5	15.3
Multi-round Visual Conversation	Image	30.0	9.0	12.6
	Language Modality			
MathInstruct √	Image	31.9	10.9	14.4
Olympiad Math √	Image	31.5	8.5	13.1
CodeI/O √	Image	29.2	9.0	14.9
Web Knowledge Base	Image	31.3	9.5	9.0
Domain Combi	nation (Sampled data from	/ doma	ins)	
GUIMid	Image	34.3	9.5	21.2

All math-related domains help! Even the language math data, demonstrates generalization from text to multimodal tasks.

Here we have some useful domains, what if we combine them?

We combine the math and code data and sample a 300K mid-training data: GUIMid

GUIMid

Domains	Observation	Web	Arena	AndroidWorld
		PR	SR	SR
GUI Post-Training Only	Image	26.3	6.2	9.0
	Public Baselines			
GPT-40-2024-11-20	Image	36.9	15.6	11.7
OS-Genesis-7B	Image + Accessibility Tree	_	_	17.4
AGUVIS-72B	Image	_	_	26.1
Claude3-Haiku	Accessibility Tree	26.8	12.7	-
Llama3-70b	Accessibility Tree	35.6	12.6	_
Gemini1.5-Flash	Accessibility Tree	32.4	11.1	-
Visi	on-and-Language Modality			
Chart/ Document QA	Image	24.6	6.2	15.3
Non-GUI Perception	Image	28.7	7.6	14.0
GUI Perception	Image	27.4	7.1	14.0
Web Screenshot2Code	Image	28.0	6.6	9.9
Non-GUI Agents	Image	30.8	8.5	13.5
Multi-modal Math √	Image	30.4	8.5	15.3
Multi-round Visual Conversation	Image	30.0	9.0	12.6
	Language Modality			
MathInstruct √	Image	31.9	10.9	14.4
Olympiad Math √	Image	31.5	8.5	13.1
CodeI/O √	Image	29.2	9.0	14.9
Web Knowledge Base	Image	31.3	9.5	9.0
Domain Combi	nation (Sampled data from	/ doma	ins)	
GUIMid	Image	34.3	9.5	21.2

The combined data shows a significant improvement, especially on mobile, indicating these math and code data can complement each other, further enhancing the model's reasoning ability when combined.

Next Step:

We now have powerful agents capable of both planning and making action.

However, a single agent always has performance limits.

So ...

How about bringing more agents to the party?

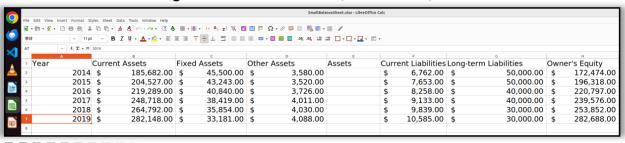
AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant VIENNI

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, Zhiyong Wu

Multi-Agent Algorithms

Published as a conference paper at COLM 2024

Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration


Qiushi Sun^{⋄▽}*Zhangyue Yin[♠] Xiang Li[♠] Zhiyong Wu^{⋄†} Xipeng Qiu[♠] Lingpeng Kong[▽]
[⋄]Shanghai AI Laboratory [▽]The University of Hong Kong

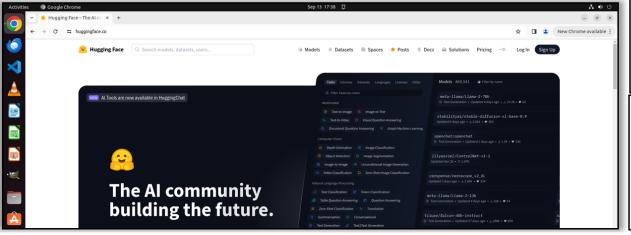
Fudan University East China Normal University qiushisun@connect.hku.hk, yinzy21@m.fudan.edu.cn, xiangli@dase.ecnu.edu.cn wuzhiyong@pjlab.org.cn, xpqiu@fudan.edu.cn, lpk@cs.hku.hk

Can a Single Agent handle a variety of OS tasks?

Task_1: In a new sheet with 4 headers "Year", "CA changes", "FA changes", and "OA changes", calculate the annual changes for the Current Assets, Fixed Assets, and Other Assets columns.

SheetAgent specialize in sheet processing

pip install openpyxl && lsof | grep '.xlsx'


Step 2: Create new sheet and add headers

ws_new = wb.create_sheet(title=sheet_name)
ws_new.append(headers), wb.save(file_path)

Step 3: Insert table for the required data

for row in range(2, ws_original.max_row + 1):

Task_2: Find the daily paper and take down the meta information of papers on 1st March, 2024 in the opened . pptx file. Please conform to the format and complete others.

Different specialist agents are required to collaborate system-wide tasks

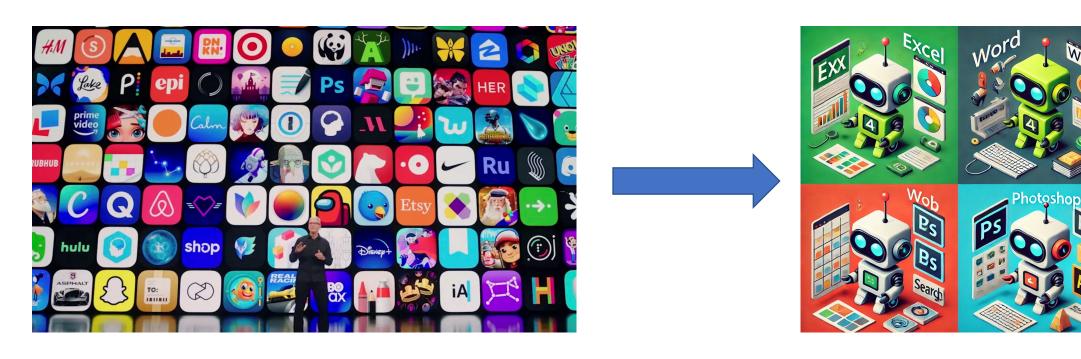
year = ws original.cell(arg).value,...

SubTask 1: Find papers and extract meta info

ws new.append([year, ...])

- Step 1: Click daily papers to browsing
- Step 2: Filter results by choosing1st March
- **Step 3: Extract info for selecting papers**

subtask complete


message passing

SubTask 2: write meta info into pptx

- Step 1: Install package and locate .pptx file
- Step 2: load content for current .pptx file
- Step 3: Write info into corresponding file
- Step 4: Save and overwrite the original file

- 1. Generalist Agent: lack of specialized abilities.
- 2. Specialized Agent: Unable to generalize to system-level tasks.

From APPStore to AgentStore:

Build an open and scalable platform for dynamically integrating various computer-using agents.

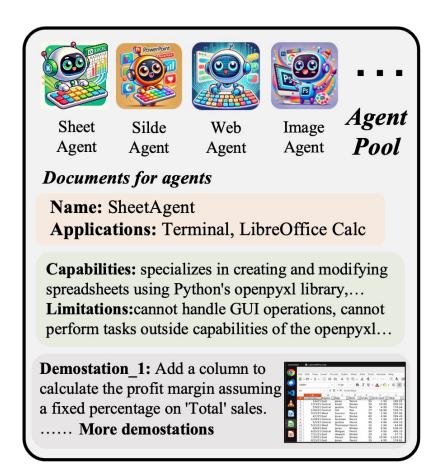
AgentStore

Limitations: cannot handle GUI operations, cannot perform tasks outside capabilities of the openpyxl...

AgentEnroll

Demostation 1: Add a column to

a fixed percentage on 'Total' sales.

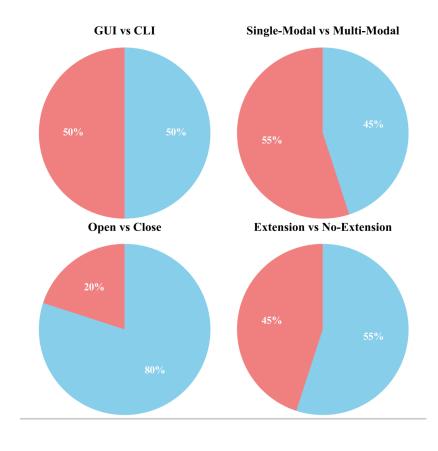

More demostations

calculate the profit margin assuming

- 1. AgentStore allows users to quickly integrate their own specialized agents into the platform, similar to the functionality of the App store.
- 2. We introduce a novel MLLM-based MetaAgent with AgentToken strategy, to select the most suitable agent(s) to complete tasks.

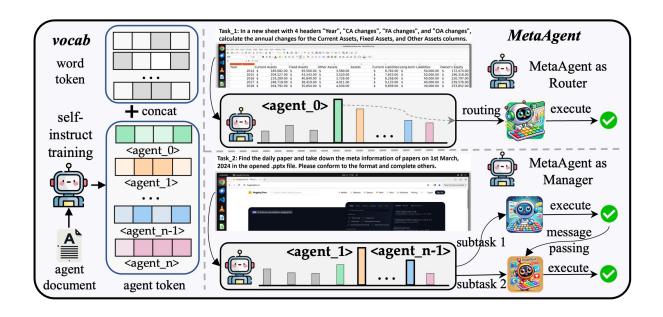
AgentStore

AgentPool: The set of all available agents in AgentStore.


- 1. Register new agents in a standardized format.
- 2. includes: functionality, limitations, application scenarios...
- 3. Define as $a = \{(a_1, d_1)(a_2, d_2), ... (a_n, d_n)\}$ Agent Documentation

20 desktop agents and 10 mobile agents, each specialized for tasks on their respective platforms.

Specialized agents in AgentStore


Table 6: The presentation of agents in the AgentPool.

	CLI or GUI?	Single or Multi Modal?	Open or Close Base Model?	Domain for OSworld	Support Extension?
OSAgent	GUI	Multi	Close	OS	✓
Friday (Wu et al., 2024)	CLI	Single	Close	OS	✓
SheetAgent	CLI	Single	Close	Calc	X
CalcAgent	GUI	Multi	Close	Calc	✓
SlideAgent	CLI	Single	Close	Impress	X
ImPressAgent	GUI	Multi	Close	Impress	✓
WordAgent	CLI	Single	Close	Writer	X
WriterAgent	GUI	Multi	Close	Writer	✓
VLCAgent	GUI	Multi	Close	VLC	✓
MailAgent	GUI	Multi	Close	TB	✓
ChromeAgent	GUI	Multi	Close	Chrome	✓
WebAgent (He et al., 2024)	GUI	Multi	Close	Chrome	X
VSAgent	GUI	Multi	Open	VSC	×
VSGUIAgent	CLI	Single	Close	VSC	✓
GimpAgent	GUI	Multi	Close	GIMP	✓
ImageAgent	CLI	Single	Open	GIMP	✓
Searcher	CLI	Single	Close	-	X
GoogleDrive	CLI	Single	Close	-	X
CoderAgent	CLI	Single	Open	-	X
VisionAgent	CLI	Multi	Open	-	X

LLM/CLI-based model + LVM/GUI-based model

AgentStore

AgentToken: Each agent is registered by adding a token to the MetaAgent Vocab.

MetaAgent: Acts as an efficient router, predicting the most probable next token by maximizing conditional probability.

Once the agent token is predicted, decoding stops, and the corresponding Computer-using agent is called to execute the task.

Performance

Agent	Base	Success Rate (%)									
115cm	Dase	OS*	Calc	Impress	Writer	VLC	TB	Chrome	VSC	GIMP	AVG
CogAgent	GogVLM	1.60	2.17	0.00	4.35	6.53	0.00	2.17	0.00	0.00	1.32
MMAgent	GPT-4o	14.44	4.26	6.81	8.70	9.50	6.67	15.22	30.43	0.00	11.21
CRADLE	GPT-4o	8.00	0.00	4.65	8.70	6.53	0.00	8.70	0.00	38.46	7.81
Friday*	GPT-4o	15.20	25.50	0.00	21.73	0.00	0.00	0.00	17.39	15.38	11.11
Open-Inter*	GPT-4o	12.80	12.76	0.00	13.04	0.00	0.00	0.00	17.39	15.38	8.94
AgentStore(GT)	Hybrid	20.00	36.17	10.63	47.83	47.06	40.00	34.78	47.82	38.46	29.54
AgentStore(ICL)	Hybrid	9.60	0.00	2.13	4.34	35.29	33.33	30.43	30.43	15.38	13.55
AgentStore(FT)	Hybrid	8.80	27.65	4.26	13.04	41.17	40.00	34.78	8.60	15.38	17.34
AgentStore(AT)	Hybrid	13.86	31.91	8.51	39.13	47.06	40.00	32.61	39.13	30.77	23.85

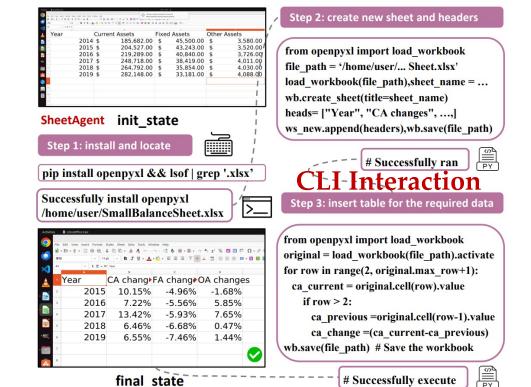
AgentStore achieved a success rate of 23.85% on highly challenging OSWorld benchmark. (Claude 3.5 Sonnet: 22%)

Rank	Model
1 Oct 24, 2024	AgentStore (AgentToken) Shanghai Al Lab
	Shanghai Al Lab, '24
2	Agent S w/ GPT-4o
Oct 11, 2024	Simular Research
	Simular Research, '24
3	Agent S w/ Claude-3.5
Oct 11, 2024	Simular Research
	Simular Research, '24
4	AgentStore (Fine-Tuning)
Oct 24, 2024	Shanghai AI Lab
	Shanghai Al Lab, '24
5	AgentStore (In-Context Learning)
Oct 24, 2024	Shanghai Al Lab
	Shanghai Al Lab, '24
6	GPT-4 Vision
Mar 20, 2024	OpenAl
	OpenAI, '23

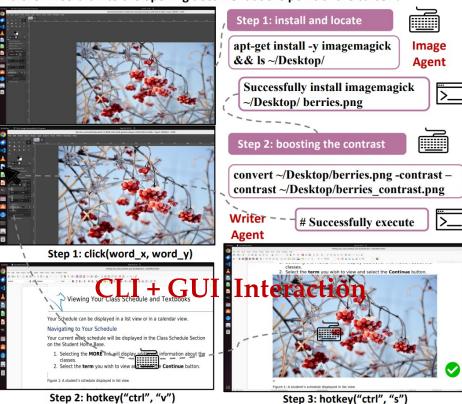
Task-1: Set up to forward every email received by anonym-x2024@outlook.com in the future to anonym-x2024@gmail.com. MailAgent

Step1: click(filters_x, filters_y)
Click on \"Manage message filters\"

Step2: click(new_x, new_y)
Click on \"New...\" to create a new filter



Step3: typewrite('Forward to Gmail') ... click(choose _x,choose_y) ...typewrite('anonymx2024@gmail.com')


Individual was a series of the series of t

Step4: click(1424, 629), click(close_x, close_y)
#Ensure the filter is enabled and close the window

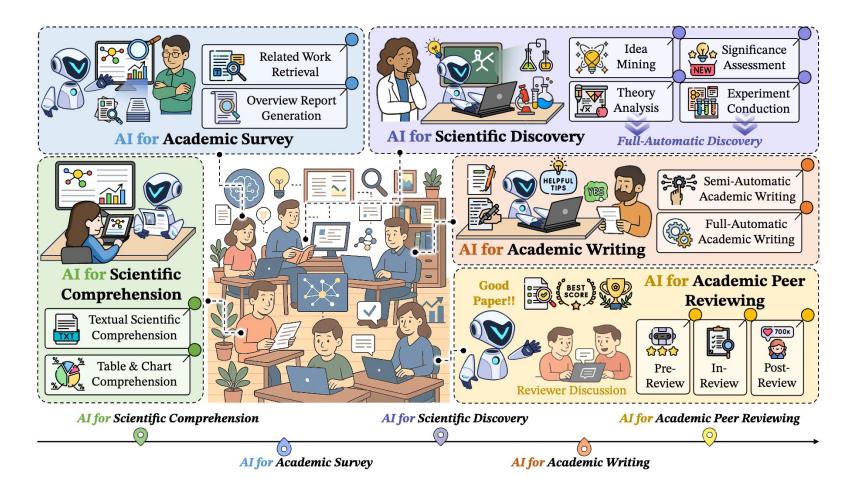
Task-2: In a new sheet with "Year", "CA changes", "FA changes", and "OA changes", calculate the annual changes for the Current, Fixed, and Other Assets columns.

Task-3: Could you assist me in boosting the contrast of my photo in the desktop and then insert it into the opening document at the point of the cursor?

Demos

Summary of Multi-Agents

- 1. Multi-agent integration can rapidly advance computer-using capabilities.
- 2. Greatly facilitates generalization to new domains.
- 3. Plug-and-play design, enabled by carefully crafted AgentTokens, allows for fast integration.



Next Steps?

Exploring the deep value of computer-using agents: from general-purpose scenarios to specialized professional applications.

Backgrounds

AI4Research is a highly popular concept.

Backgrounds: Pastoral Age

BioASQ-QA (Nature 2023)

- Designed for biomedical question answering
- Annually expanded with new questions and answers.
- Available on Zenodo in JSON format.

MoleculeQA (ArXiv 2024)

- Evaluate Factual Accuracy in Molecular Comprehension
- 62K QA Pairs across 23K molecules
- MCQ problems (training set available)
- Textual-based

Fig. 4 Most frequent topics in the BioASQ questions.

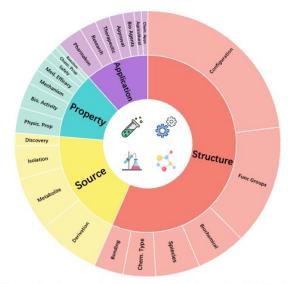


Figure 4: An overview of MoleculeQA topics distribution. Four coarse-grained aspects occupy the inner circle, and in the outer circle we list finer-grained non-leaf topics.

Backgrounds: Contemporary Era

A lot of "AI Research" systems have been built...

0024 0 4

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Chris Lu^{1,2,*}, Cong Lu^{3,4,*}, Robert Tjarko Lange^{1,*}, Jakob Foerster^{2,†}, Jeff Clune^{3,4,5,†} and David Ha^{1,†}
^{*}Equal Contribution, [†]Sakana Al, ²FLAIR, University of Oxford, ³University of British Columbia, ⁴Vector Institute, ⁵Canada CIFAR
Al Chair, [†]Requal Advising

SCIMON : Scientific Inspiration Machines Optimized for Novelty

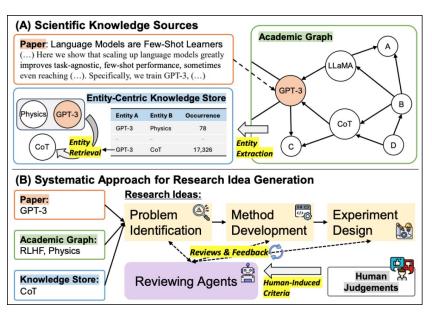
Qingyun Wang¹, Doug Downey², Heng Ji¹, Tom Hope²,³
¹ University of Illinois at Urbana-Champaign ² Allen Institute for Artificial Intelligence (AI2)
³ The Hebrew University of Jerusalem
{tomh,doug}@allenai.org, {qingyun4,hengji}@illinois.edu

Research Agent: Iterative Research Idea Generation over Scientific Literature with Large Language Models

 $\label{eq:continuous_series} \begin{array}{ccccc} \textbf{Jinheon Baek}^1 & \textbf{Sujay Kumar Jauhar}^2 & \textbf{Silviu Cucerzan}^2 & \textbf{Sung Ju Hwang}^{1,3} \\ & & \text{KAIST}^1 & \text{Microsoft Research}^2 & \text{DeepAuto.ai}^3 \\ \{\text{jinheon.baek, sjhwang82}} \\ \text{@kaist.ac.kr} & \text{sjauhar, silviu}} \\ \text{@microsoft.com} \end{array}$

Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis

Jianxiang Yu°*, Zichen Ding°*, Jiaqi Tan°, Kangyang Luo°, Zhenmin Weng°, Chenghua Gong°, Long Zeng°, Renjing Cui°, Chengcheng Han°, Qiushi Sun°, Zhiyong Wu°, Yunshi Lan°, Xiang Li°†


© East China Normal University, Shanghai, China

† Shanghai Al Laboratory, Shanghai, China

sea.ecnu@gmail.com

https://ecnu-sea.github.io/

Thinking

Traditionally, AI acted as an "analyzer," helping with idea thinking data analysis, writing, and visualization.

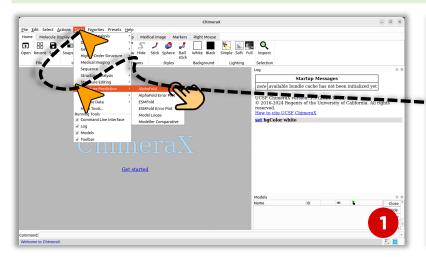
With Computer-using agents, AI can be evolved into an "executor" capable of directly operating scientific software via GUI or CLI,

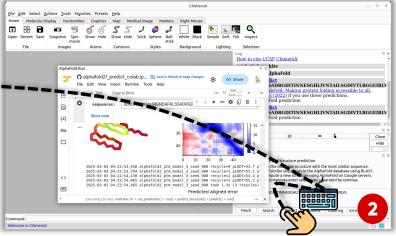
Moving beyond QA to actively performing research tasks!

From Digital Agents to AI Co-Scientists

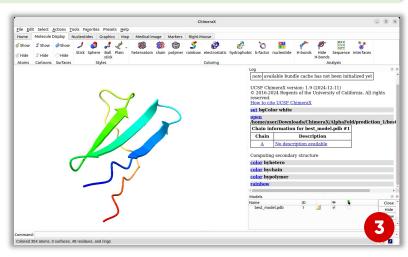
ScienceBoard: Evaluating Multimodal Autonomous **Agents in Realistic Scientific Workflows**

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao, Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, Jianing Wang, Qintong Li, Xiangru Tang, Tianbao Xie, Xiachong Feng, Xiang Li, Ben Kao, Wenhai Wang, Biqing Qi, Lingpeng Kong, Zhiyong Wu

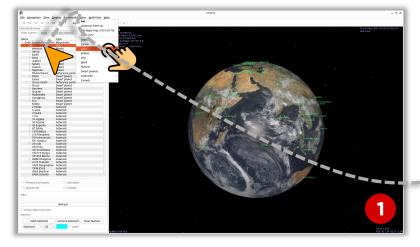


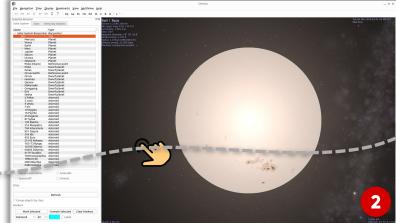


Use Cases

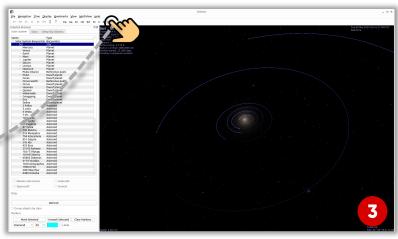

Instruction: Predict the protein structure for the amino acid sequence of 'MGND...' via AlphaFold in ChimeraX.

Step1: Toggle the widget of AlphaFold.


Step2: Input the given sequence and call out AlphaFold for structure prediction.


Step3: Wait until the prediction finished.

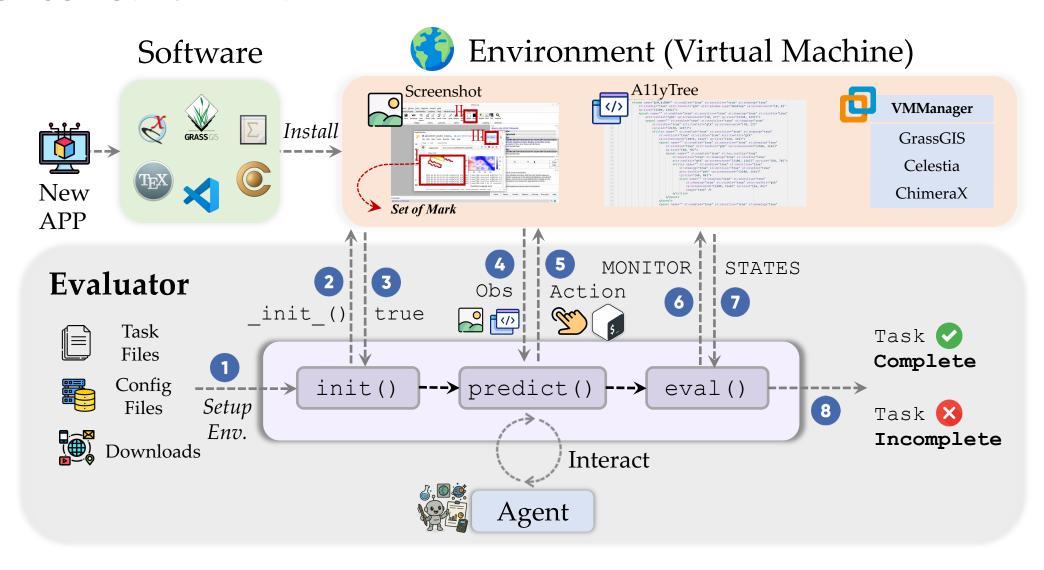
Use Cases


Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Select the Sol and click 'Goto' in contect menu.

Step2: Slide the mouse wheel to move the camera away from Sol.

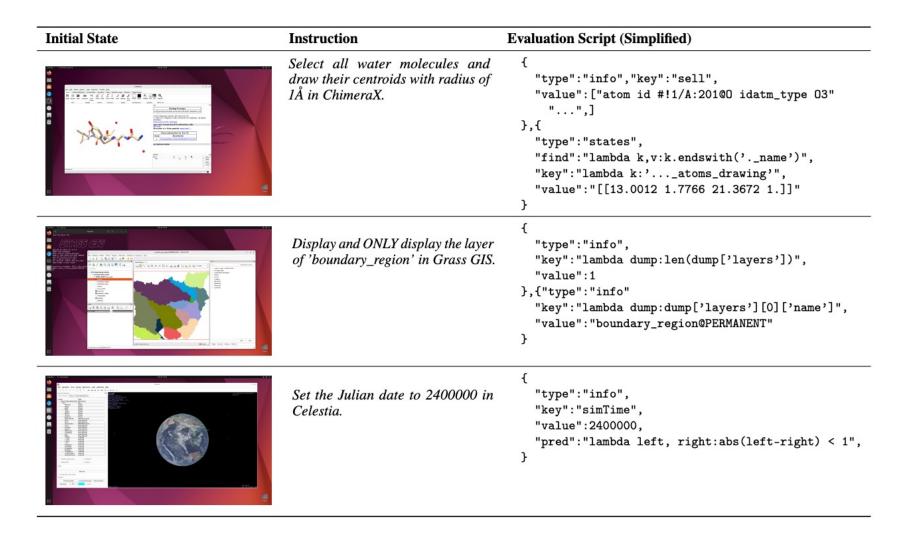
Step3: Click to show orbits of planets.


ScienceBoard

To reach such automation, a playground integrating

- 1. Scientific software
- 2. Evaluators

Is essential, a highly non-trivial endeavor!


ScienceBoard Infra

The first multimodal agent evaluation environment designed for scientific tasks, real interactions, and automatic assessment

ScienceBoard Evaluation

State-based evaluation

ScienceBoard Benchmark

Task Type	Statistics
Total Tasks	169 (100%)
- GUI	38 (22.5%)
- CLI	33 (19.5%)
- GUI + CLI	98 (58.0%)
Difficulty	
- Easy	91 (53.8%)
- Medium	48 (28.4%)
- Hard	28 (16.6%)
- Open Problems	2 (1.2%)
Instructions	
Avg. Length of Task Instructions	20.0
Avg. Length of Agentic Prompt	374.9
Execution	
Avg. Steps	9.0
Avg. Time Consumption	124(s)

Evaluate autonomous computerusing agents in realistic scientific workflows.

Tasks require complex tool usage, scientific reasoning, and multi-step GUI/CLI operations

Evaluation

Proprietary Models

Opensource LLM / VLMs

GUI Action Models

[21] Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents

[22] UI-TARS: Pioneering Automated GUI Interaction with Native Agents

[23] GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents

Evaluation: General Setting

Overall success rate remains low (avg. ~15%)

Performance varies among domains

Best results achieved with combined Screenshot + allytree setting

Table 3: Success rates on SCIENCEBOARD. We present the performance of each agent backbone across different scientific domains under various observation settings. Proprietary Models, Open-Source VLMs / LLMs, and GUI Action Model are distinguished by color.

Observations	Model -	Success Rate (†)						
Observations	Wiodei –	Algebra	Biochem	GIS	ATP	Astron	Doc	Overall
	GPT-4o	3.23%	0.00%	0.00%	0.00%	0.00%	6.25%	1.58%
	Claude-3.7-Sonnet	9.67%	37.93%	2.94%	0.00%	6.06%	6.25%	10.48%
Screenshot	Gemini-2.0-Flash	6.45%	3.45%	2.94%	0.00%	0.00%	6.06%	3.15%
	Qwen2.5-VL-72B	22.58%	27.59%	5.88%	0.00%	9.09%	12.50%	12.94%
	InternVL3-78B	6.45%	3.45%	0.00%	0.00%	0.00%	6.25%	2.69%
	UI-TARS-1.5-7B	12.90%	13.79%	0.00%	0.00%	6.06%	0.00%	2.69%
	GPT-4o	12.90%	20.69%	2.94%	0.00%	6.06%	0.00%	7.10%
	Claude-3.7-Sonnet	19.35%	34.48%	2.94%	3.85%	12.12%	0.00%	12.12%
a11ytree	Gemini-2.0-Flash	9.68%	17.24%	0.00%	0.00%	0.00%	0.00%	4.49%
,	o3-mini	16.13%	20.69%	2.94%	3.85%	15.15%	6.25%	10.84%
	Qwen2.5-VL-72B	9.68%	10.34%	2.94%	0.00%	3.03%	0.00%	4.33%
	InternVL3-78B	3.23%	3.45%	0.00%	0.00%	0.00%	0.00%	1.11%
	GPT-4o	22.58%	37.93%	2.94%	7.69%	3.03%	12.50%	14.45%
Screenshot	Claude-3.7-Sonnet	12.90%	41.37%	8.82%	3.85%	9.09%	18.75%	15.79%
+ allytree	Gemini-2.0-Flash	16.13%	24.14%	2.94%	0.00%	18.18%	12.50%	12.32%
•	Qwen2.5-VL-72B	16.13%	20.69%	2.94%	0.00%	18.18%	12.50%	11.74%
	InternVL3-78B	6.45%	3.45%	0.00%	0.00%	3.03%	6.25%	3.20%
	GPT-4o	6.45%	3.45%	0.00%	0.00%	3.03%	12.50%	4.24%
	Claude-3.7-Sonnet	16.13%	31.03%	5.88%	0.00%	6.06%	12.50%	11.93%
Set-of-Mark	Gemini-2.0-Flash	3.23%	0.00%	0.00%	0.00%	3.03%	6.25%	2.09%
Set of Wark	Qwen2.5-VL-72B	6.45%	6.90%	2.94%	0.00%	3.03%	12.50%	6.36%
	QvQ-72B-Preview	0.00%	0.00%	2.94%	0.00%	3.03%	0.00%	0.49%
	InternVL3-78B	3.23%	6.90%	2.94%	0.00%	0.00%	0.00%	2.18%
Human	Performance	74.19%	68.97%	55.88%	42.31%	51.52%	68.75%	60.27%

Evaluation: Modular Setting

GPT-40 as the planner + GUI model

Clear performance improvement (up to ~20% SR)

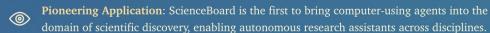
Separating planning and action offers a promising direction!

Table 4: Success rates of different VLM agent combinations under the planner + grounding model setting on SCIENCEBOARD. The observation setting used in this experiment is screenshot. Colors denote Proprietary Models, Open-Source VLMs and GUI Action Models.

Planner	Grounding Model	Success Rate (†)						
1 minici	Grounding woder	Algebra	Biochem	GIS	Astron	Overall		
	OS-Atlas-Pro-7B	6.25%	10.34%	0.00%	3.03%	4.92%		
	UGround-V1-7B	0.00%	3.45%	0.00%	3.03%	1.62%		
GPT-4o	Qwen2.5-VL-72B	12.50%	34.48%	11.76%	9.09%	16.96%		
	UI-TARS-72B	3.23%	10.34%	5.88%	6.06%	6.38%		
	GUI-Actor-7B	21.88%	44.83%	2.94%	12.12%	20.44%		
	GPT-4o	3.23%	0.00%	0.00%	0.00%	0.81%		

Next step: stronger multi-agent system + domain knowledge?

Leaderboard

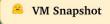

Screer	A11y Tree Screenshot	+ A11y Tree	Set of Mark	Search by	keywords			
O	Settings	% Acc ↓	% Alg	% Biochem	% GIS	% ATP	% Astron	% Doc
*	Calude-3.7-Sonnet w/ screenshot	15.79	12.90	41.37	8.82	3.85	9.09	18.75
\$	GPT-4o (2024-08-06) w/ screensh	14.45	22.58	37.93	2.94	7.69	3.03	12.50
\$	GPT-4o (2024-08-06) w/ set_of_m	14.45	6.45	3.45	0.00	0.00	3.03	12.50
绫	Qwen2.5-VL-72B w/ screenshot	12.94	22.58	27.59	5.88	0.00	9.09	12.50
+	Gemini-2.0-Flash w/ screenshot+a	12.32	16.13	24.14	2.94	0.00	18.18	12.50
*	Calude-3.7-Sonnet w/ a11y_tree	12.12	19.35	34.48	2.94	3.85	12.12	0.00
*	Calude-3.7-Sonnet w/ set_of_marks	11.93	16.13	31.03	5.88	0.00	6.06	12.50
绫	Qwen2.5-VL-72B w/ screenshot+a	11.74	16.13	20.69	2.94	0.00	18.18	12.50
\$	o3-mini (2025-01-31) w/ a11y_tree	10.84	16.13	20.69	2.94	3.85	15.15	6.25
*	Calude-3.7-Sonnet w/ screenshot	10.48	9.67	37.93	2.94	0.00	6.06	6.25
\$	GPT-4o (2024-08-06) w/ a11y_tree	7.10	12.90	20.69	2.94	0.00	0.00	6.06
绫	Qwen2.5-VL-72B w/ set_of_marks	6.36	6.45	6.90	2.94	0.00	3.03	12.50
X	UI-TARS-1.5 w/ screenshot	5.92	12.90	13.79	0.00	0.00	6.06	0.00
+	Gemini-2.0-Flash w/ a11y_tree	4.49	9.68	17.24	0.00	0.00	0.00	0.00
绫	Qwen2.5-VL-72B w/ a11y_tree	4.33	9.68	10.34	2.94	0.00	3.03	0.00
<u> </u>	InternVL3-78B w/ screenshot+a11	3.20	6.45	3.45	0.00	0.00	3.03	6.25
*	Gemini-2.0-Flash w/ screenshot	3.15	6.45	3.45	2.94	0.00	0.00	6.06

Our Project

ScienceBoard

Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Introducing ScienceBoard, a first-of-its-kind evaluation platform for multimodal agents in *scientific workflows*. ScienceBoard is characterized by the following core features:

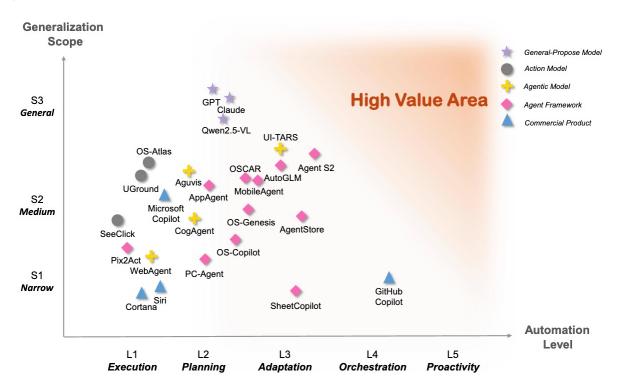

Challenging Benchmark: A new benchmark of 169 rigorously validated tasks across 6 core domains is introduced, capturing real-world challenges.

Comprehensive Evaluations: We presents systematic evaluations across a wide range of agents powered by LLMs, VLMs, and GUI action models.

中文解读 (ScienceBoard)

Future

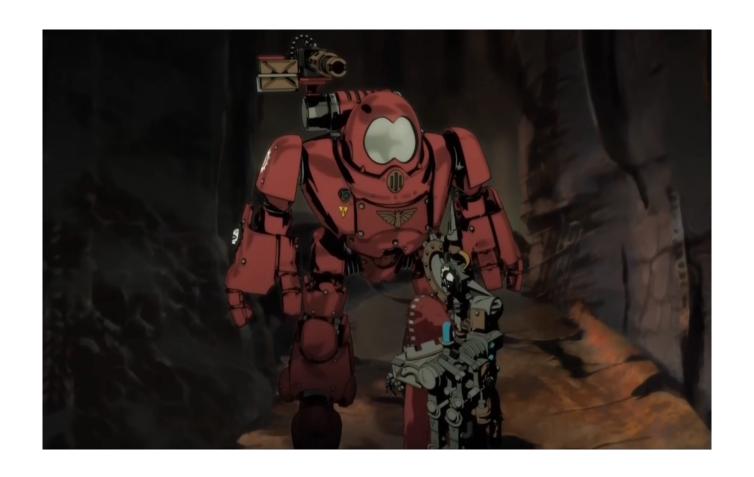
We are just standing at the dawn of a long journey!


1. Holistic Evaluation?

- 2. Agent Safety?
- 3. Efficiency?
- 4. Physical world?

Holistic Evaluation

The development of computer-using agents has been rapidly advancing, yet systematic evaluation remains underexplored.


Stay tuned!

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Safety Concerns

Agent safety research is behind agent deployment!

Efficiency

Although computer-using agents can accomplish many tasks, **efficiency remains a critical concern**.

Two main aspects:

- 1. Training efficiency: Heavy reliance on massive data (data hungry)
- 2. Inference efficiency: High latency during real-time execution

Connection to the Physical World

How can computer-using agents achieve embodiment?

- 1. Robotic arms?
- 2. Exoskeletons?
- 3. ...

Future

We are just standing at the dawn of a long journey!

1. Holistic Evaluation?

- 2. Agent Safety?
- 3. Efficiency?
- 4. Physical world?

中文解读(OS-Genesis)

中文解读 (ScienceBoard)

中文解读 (SeeClick)

中文解读 (OS-ATLAS)

中文解读 (AgentStore)

Acknowledgement

We are just standing at the dawn of a long journey!

Thanks for listening

Contact: qiushisun@connect.hku.hk