

Boosting Language Models Reasoning with Chain-of-Knowledge Prompting

Jianing Wang^{1*}, Qiushi Sun^{2*}, Xiang Li^{1†}, Ming Gao¹

¹East China Normal University ²The University of Hong Kong

* Equal Contribution * Corresponding Author

Background & Motivations

Reasoning with LLMs

- The prosperity of LLMs
 - **G**PT
 - **G**emini
 - □ Claude
 - LLaMA Series
 - □ MOSS/InternLM/Qwen

Δ...

Strategies
 In-Context Learning
 Task Decomposition

Reasoning with LLMs

The success of LLMs on reasoning: spontaneously decompose the complex problem into intermediate reasoning chains

"Let's think step by step"

Indirect target: $P(y|x) = P(y|z_n) \cdots P(z_1|x)$

Reasoning with LLMs

The success of LLMs on reasoning: spontaneously decompose the complex problem into intermediate reasoning chains

Least-to-Most Decomposition

Chain/Tree-of-Thought

Problems

Hallucinated Output

Input-Conflicting: Unfaithfulness of Input-OutputFact-Conflicting: Unfactual of Output-Facts

User Input

Can you recommend a delicious recipe for dinner?

LLM Response

Yes, here is a delicious recipe for lunch. So how about fried chicken with mashed potatoes? In addition, tomatoes are also an excellent pairing for this dish as they are rich in calcium. Enjoy this steak! Input-Conflicting Hallucination: the user wants a recipe for <u>dinner</u> while LLM provide one for <u>lunch</u>.

Fact-Conflicting Hallucination: <u>tomatoes</u> are not rich in <u>calcium</u> in fact.

Hallucination Problem in LLMs' Reasoning: **Cannot verify the reliability of rationales!**

Tackling this issue

- Recap: How LLMs are built:
 - □ Pre-training on ultra-large-scale corpus: Learn about prior information.
 - Supervised fine-tuning on instruction-like data: Learn about instructionfollowing capabilities.
 - □ Aligning with preferences via RLHF, DPO, etc.: Learn about reliable response.
 - □ Reasoning on complex problems: Learn about how to solve a task.

Have We Fully Utilized the Knowledge Learned by the Model?

Elicit It to Boost LLM Reasoning!

Methodology

Chain-of-Knowledge (CoK) Prompting

Triples and Hints

Input

Q: Is the following sentence plausible? 'Joao Moutinho was out at third.'

Evidence triples:

- 1. (Joao, isA, soccer player)
- 2. (being out at third, is part of, baseball)

Explanation hints: Being out at third is part of baseball, yet, Joao Moutinho is a soccer player.

A: No.

Q: Is the following sentence plausible? 'Derrick White backhanded a shot.'

Output

Evidence triples:

1. (Derrick White, isA, basketball player)

2. (backhanded shot, is commonly used in, hockey or tennis)

Explanation hints: Backhanded shot is commonly used in hockey or tennis, but not in basketball.

A: No. 🔽

(c) Ours: Chain-of-Knowledge Prompting

Evidence Triples----Structure rationale
 (h, r, t): h denotes head entity, r denotes relation, t denotes tail entity.

Explanation Hints----Textual rationale

LLMs can be **elicited** to generate both structured and textual rationales.

Question: Can the knowledge generated by the model be truly reliable?

Perhaps not, we need to refine and process this knowledge further.

F²-Verification: Faithfulness Score

Leverage SimCSE to calculate the similarity between Evidence Triples and Explanation Hints.

$$s_u(\widetilde{T}, \widetilde{H} | \widetilde{X}) = \operatorname{SimCSE}(||_{j=1}(T_j), \widetilde{H}),$$

 $\widetilde{T} = \{(s_j, r_j, o_j)\}_{j=1}^L$: Evidence Triples \widetilde{H} : Explanation Hints \widetilde{X} : Test Input

F²-Verification: Factuality Score

Leverage external knowledge graph to calculate the correctness of each evidence triple.

- Exactly Matching: If the generated triple can be found in KG, we can assign score 1.0;
- ➤ Implicit Matching: If not found in KG, we can calculate the energy score (smaller than 1.0)

$$d(s_j, r_j, o_j | \mathcal{G}) = ||\mathbf{s}_j^{(r,c)} + \mathbf{r}^c - \mathbf{o}_j^{(r,c)}||_2^2 + \alpha ||\mathbf{r}^c - \mathbf{r}_j||_2^2$$

F²-Verification: Factuality Score

Leverage external knowledge graph to calculate the correctness of each evidence triple.

- Exactly Matching: If the generated triple can be found in KG, we can assign score 1.0;
- ➤ Implicit Matching: If not found in KG, we can calculate the energy score (smaller than 1.0)
- > Merge them:

$$s_{v}(\widetilde{T}|\widetilde{X},\mathcal{G}) = \frac{1}{|\widetilde{T}|} \sum_{(s_{j},r_{j},o_{j})\in\widetilde{T}} \left[\mathbb{I}((s_{j},r_{j},o_{j})\in\mathcal{G}) + (1 - \mathbb{I}((s_{j},r_{j},o_{j})\in\mathcal{G}))d(s_{j},r_{j},o_{j}|\mathcal{G}) \right]$$

F²-Verification:

Merge faithfulness and factuality score

$$s(\widetilde{T}, \widetilde{H} | \widetilde{X}, \mathcal{G}) = \gamma \times s_u(\widetilde{T}, \widetilde{H} | \widetilde{X}) + (1 - \gamma) \times s_v(\widetilde{T} | \widetilde{X}, \mathcal{G})$$

Overview Framework

Exemplars Construction

Exemplars Construction

- 1. Randomly select *K* labeled examples.
- 2. Concatenate the prompt "Let's think step by step" with each example's input to elicit the LLM to generate textual rationale.
- 3. Invite five experts to annotate the evidence triples based on six KBs.

Chain-of-Knowledge Reasonin

No.

Overview Framework

Chain-of-Knowledge Reasoning

Reasoning

Prompt the LLM (e.g., GPT) to generate both evidence triples and explanation hints.

```
F<sup>2</sup>-Verification
```

Overview Framework

5 CONSTRUCTION

onam-or-knowledge Reasoning

F²-Verification

Rethinking

- F²-Verification ensures factuality and faithfulness of triples and explanations.
- Rethinking algorithm iteratively refines answers based on reliability
- Queries are repeatedly evaluated and improved by injecting correct knowledge.
- Dynamically boosts the performance of LLMs by refining the reasoning chains.

ngoritimi i Redmiking i 100035
Require: Exemplars \mathcal{E} , testing query set $\mathcal{D}_{test} \leftarrow {\{\hat{Q}_i\}_{i=1}^M}$ KB \mathcal{K} , iterator number $N(\geq 1)$, reliability threshold $0 < \theta < 1$.
1: Initialize an unreliability set $U \leftarrow \mathcal{D}_{test}$.
2: for each iteration $n \leftarrow 1, \cdots, N$ do
3: for each query \hat{Q}_i in U do
4: Obtain a CoK prompt $\hat{I}_i^{(n)}$. If n is 1, $\hat{I}_i^{(n)} \leftarrow$
$[\mathcal{E};\hat{Q}_i].$
5: Generate evidence triple $\hat{T}_i^{(n)}$, explanation him
$\hat{H}_i^{(n)}$ and answer $\hat{A}_i^{(n)}$ from the LLM.
6: Calculate reliability score $C_i^{(n)}$ in Eq. 1.
7: if $C_i^{(n)} > \theta$ then
8: Obtain final answer $\hat{A}_i \leftarrow \hat{A}_i^{(n)}$.
9: Remove \hat{Q}_i from U.
10: continue
11: end if
12: For the evidence triples that
$f_v(\hat{r}_{ij}^{(n)} \hat{s}_{ij}^{(n)},\hat{o}_{ij}^{(n)},\mathcal{K})$ $<$ $ heta$, inject the correction
sponding correct knowledge triples \hat{T}'_i into the
prompt, i.e., $\hat{I}_i^{(n+1)} \leftarrow [\hat{I}_i^{(n)}; \hat{T}_i']$.
13: end for
14: end for
15: for each query \hat{Q}_i in U do
16: Obtain the final answer $\hat{A}_i \leftarrow \arg \max_{\hat{A}^{(n)}} C_i^{(n)}$.
17: end for
18: return all the answers $\{\hat{A}_i\}_{i=1}^M$.

Algorithm 1 Rethinking Process

Empirical Evaluations

Overall

Model	Commonsense & Factual						Symbolic		Arithmetic			
	Common Sense QA	Strategy QA	OpenBook QA	ARC-c	: Sports	BoolQ	Letter	Coin	GSM8K	SVAMP	AQuA	MultiArith
Fine-tuning	91.2	73.9	91.0	75.0	-	92.4	-	-	55.0	57.4	37.9	-
			text-da	vinci-00	02 reas	oning r	esults					
Zero-Shot SP	68.8	12.7	44.7	46.8	38.1	50.2	0.2	12.8	10.4	58.8	22.4	17.7
Zero-Shot CoT	64.6	54.8	68.4	64.7	77.5	52.7	57.6	91.4	40.7	62.1	33.5	78.7
Few-Shot SP	79.5	65.9	76.6	68.2	69.6	53.6	0.0	49.1	15.6	65.7	24.8	33.8
Manual CoT	73.5	65.4	73.0	69.9	82.4	55.0	59.0	74.5	46.9	68.9	35.8	91.7
Auto-CoT	74.4	65.4	-	-	-	-	59.7	99.9	47.9	69.5	36.5	92.0
ĊoK	75.4	$\bar{66.6}^{-}$	73.9	71.1	83.2	56.8	59.4	97.4	⁻ 5 1.2 ⁻	- <u>69.9</u>	37. 8	<u>9</u> 4.6
$CoK + F^2 - V$	77.3	67.9	74.8	73.0	84.1	59.9	61.1	-	-	-	-	-
			gpt-3.	5-turba	reason	ning res	sults					
Manual CoT	76.5	62.6	82.6	84.9	84.0	65.1	73.0	97.4	79.1	79.5	55.1	97.3
Manual CoT + SC	78.2	63.7	85.0	86.5	86.5	66.6	74.5	99.0	87.6	85.0	66.8	98.8
ComplexCoT	75.4	62.2	-	-	-	-	-	-	79.3	77.7	56.5	95.4
ComplexCoT + SC	76.0	63.0	-	-	-	-	-	-	89.2	85.6	65.0	98.23
ĊoK	77.1	$\bar{63.8}^{-}$		85.7	85.9	67.9	63.1	98.0	83.2	81.4	$\bar{60.2}$	99.0
CoK + SC	78.9	65.0	86.1	87.5	87.4	69.4	68.3	99.2	88.2	86.0	69.7	99.3
$CoK + F^2 - V$	77.8	64.5	85.0	86.6	87.0	69.2	65.4	-	-	-	-	-
$CoK + SC + F^2 - V$	79.3	66.6	87.0	87.4	87.9	69.9	69.7	-	-	-	-	-

Ablations

- Observations:
 Performance drops when removing any component.
 - □ the variant without explicit evidence triples (CoK w/o. ET) performs worse than without explanation hints (CoK w/o. EH)

■Both triples and explanation hints guide LLMs to verify reasoning chains

Takeaway: All components are crucial, with explicit evidence triples being the most significant for performance.

Rethinking Effectiveness

• Observations:

Accuracy significantly increases during the first 3 iterations when the LLM rethinks step-by-step

Performance may drop due to over-injection of irrelevant or inconsistent information.

Takeaway: Step-by-step rethinking improves acc. but requires careful threshold management to avoid over-injection.

Different LLMs

■ Observations:

Using GPT-4 to evaluate CSQA and GSM8K, showing CoK and CoK+SC work well.

From avg. CoK demonstrates its adaptability

Takeaway: Improved performance across different LLMs, demonstrating versatility and effectiveness.

Conclusions

Conclusions

- CoK, a method to elicit LLMs for generating explicit structured rationale.
- Introduce faithfulness and factuality evaluation for enhanced rationale correctness.
- Propose a rethinking algorithm to reduce the hallucination through an iteration process with external KBs.
- > Achieve good performance on multiple reasoning tasks.

Thanks For Listening !

wjn1996/Chain-of-Knowledge

🖂 lygwjn@gmail.com or qiushisun@connect.hku.hk